跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡鎔澤
研究生(外文):Jung-TseTsai
論文名稱:以調制光譜、拉曼光譜及X-ray繞射研究砷銻化鎵、氮化銦和氮化銦/氮化鎵多層量子井的光學特性
論文名稱(外文):Studies of the Optical Properties of GaAsSb, InN and InN/GaN Multiple Quantum Wells by Photoreflectance, Raman Spectroscopy and X-ray Diffraction
指導教授:黃正雄黃正雄引用關係
指導教授(外文):Jenn-Shyong Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:光調制光譜拉曼光譜砷銻化鎵氮化銦量子井
外文關鍵詞:PhotoreflectanceRamanGaAs1-xSbxInNMQW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究砷銻化鎵、氮化銦和氮化銦/氮化鎵多層量子井的光電特性,依研究主題分為四部分,首先以光調制光譜 (Photoreflectance, PR)研究成長在砷化鎵基板上的砷銻化鎵 (GaAs1-xSbx)表面本質-N+結構在不同銻組成比下的能隙、表面費米能階和表面態密度,研究結果顯示銻的組成比和能隙的關係與文獻[Phys. Rev. B, 33, 8396 (1986)]、Van Vechten和Bergstresser理論計算的結果[Phys. Rev. B 1, 3551 (1970)]相符,表面費米能階皆強釘札在砷化鎵銻能隙內,但釘札位置隨銻組成比不同而改變,組成比(x)範在0≦x≦0.35下,可以用公式EF=0.70-0.192x表示,與之前Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]所做的結果明顯不同,我們的結果與一般認為砷化鎵銻的費米能階釘札在砷化鎵能隙的中間且接近砷化銻價帶相吻合。
其次,利用光調制光譜探究以分子束磊晶法成長的In-polar和N-polar兩種不同極性的氮化銦薄膜,觀察到293 K下都沒有PR的訊號,而在50 K下,N-polar氮化銦被觀察到一個寬且帶有Franz-Keldysh Oscillation (FKOs)的PR譜線,藉由FKO震盪的極值得到其表面電場為312 kV/cm而能隙值為0.682 eV。 In-polar氮化銦的PR光譜僅含一個很窄且沒有FKO震盪的PR譜線,顯示In-polar氮化銦表面電場小於N-polar氮化銦,由譜線的擬合可以得到三個躍遷能隙值,對應於重電洞、輕電洞和自旋軌道晶場分裂能帶到導帶的躍遷能隙值。
本論文的第三部分利用原子力顯微鏡 (Atomic Force Microscopy, AFM) 、拉曼光譜 (Raman spectroscopy)、光激發螢光光譜(Photoluminescence, PL)發現表面形貌為奈米圓錐狀的氮化銦,受到表面電場和高面積對體積比的影響有所謂的光彈性效應。在拉曼光譜實驗中,E2(high) mode的頻率隨著激發光強度增加產生紅位移,透過拉曼波峰頻率位置的位移,可以得到奈米圓錐狀的氮化銦應變改變的情形。另外,從不同激發光強度的螢光光譜可觀察到光彈性效應下應變導致能隙縮減的現象,藉由比較不同激發光強度下PL波峰的位置對E2(high) mode頻率的關係,得到應變改變0.1%時氮化銦的能隙縮減19 meV,此結果和理論計算得到的結果相吻合,因此所有的結果可以用光彈性效應-光激發載子屏蔽電場來解釋。
利用有機金屬化學氣相沉積法(Metal-organic Chemical Vapor Deposition, MOCVD)成長井寬約為1 nm的氮化銦/氮化鎵多層量子井發光二極體,以高解析X-ray繞射和高解析穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)探測其微結構,顯示氮化銦量子井層具固定厚度和明顯的邊界,藉由PL量測得到發光位置、內量子效率(internal quantum efficiency, IQE)和量子侷限史塔克效應(quantum confined Stark effect, QCSE),內量子效率隨量子井寬增可以達到12.2%,來自侷限能階的加深以及缺少量子侷限史塔克效應的影響,另外比較PL峰值和理論計算的結果,發現表面銦分離現象發生在氮化銦/氮化鎵介面,同時對氮化銦/氮化鎵多層量子井的發光位置扮演重要的作用。

This dissertation explores the electro-optical properties of GaAs1-xSbx, InN and InN/GaN multiple-quantum-well light-emitting diodes. The main focus of the dissertation is divided into four parts. First, The bandgap, surface Fermi level, and surface state density of a series of GaAs1-xSbx surface intrinsic-n+ structures with GaAs as substrate are determined for various Sb mole fractions x by the photoreflectance (PR) modulation spectroscopy. The dependence of the bandgap on the mole composition x is in good agreement with previous measurements as well as predictions calculated using the dielectric model of Van Vechten and Bergstresser in Phys. Rev. B 1, 3551 (1970). For a particular composition x, the surface Fermi level is always strongly pinned within the bandgap of GaAs1-xSbx and we find its variation with composition x is well described by a function EF = 0.70-0.192x for 0≦x≦0.35, a result which is notably different from that reported by Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]. Our results suggest that the surface Fermi level is pinned at the midgap of GaAs and near the valence band of the GaSb.
PR is then applied to study InN films with In and N polarities grown by molecular beam epitaxy. No PR feature is observed at 293 K. At 50 K, for N-polar InN, a broad PR feature with Franz-Keldysh oscillations (FKOs) is observed. The surface electric field (312 kV/cm) and band gap (0.682 eV) are deduced from analyzing FKO extremes. However, some narrow PR features are observed for In-polar InN and three transition energies are obtained, but no FKO is observed. These indicate that the surface electric field (or surface band bending) of In-polar InN is smaller than that of N-polar InN.
In the third section of this work, the photoelastic effect is observed in indium nitride (InN) nanocones with high surface to volume ratio grown by Metal-organic Chemical Vapor Deposition (MOCVD). Photoluminescence (PL), Raman spectroscopy and atomic force microscopy (AFM) are employed to characterize the effect. With an increase in the optical excitation intensity, it is observed that the E2(high) mode exhibits a redshift in frequency. Through a detailed analysis of the frequency shifts of Raman peaks, the variations of the strain in InN nanocones are deduced. Besides, the reduction of the band-gap energies due to the varied-strain with increasing excitation intensity is also observed by PL measurements. By comparing the change of the PL peak energies under high and low excitation intensities with the corresponding redshift of E2(high) phonon mode, the band gap of InN is found to redshift 19 meV as the in-plane compressive strain reduces 0.1%. All our results can be accounted for by the photoelastic effect, in which the built-in surface electric field is screened by photoexcited carriers.
InN/GaN multiple-quantum-well (MQW) light-emitting diodes, with around one-nanometer-thick InN wells, are grown by metal-organic chemical vapor deposition. The high-resolution x-ray diffraction measurement and high-resolution transmission electron microscopy indicate that the InN well layers are characterized by abrupt interfaces and uniform thickness. The photoluminescence (PL) peak energies, internal quantum efficiency (IQE) and quantum confined Stark effect (QCSE) are investigated by PL measurements. The higher IQE with increasing well width up to 12.2 % is found due to deeper confined states as well as the absence of QCSE. The comparison of PL spectra with the calculated transition energies is also taken into account. It suggests that indium surface segregation in InN/GaN MQWs plays an important role in emission energies.

第一章 緒論………………………………………………………………...1
第二章 實驗機制與設備…………………………………………………...8
2.1 光調制光譜…………………………………………………………..8
2.1-1 光調制光譜原理簡介……………………………………….8
2.1-2 低電場下的調制…………………………………………...12
2.1-3 Franz-Keldysh振盪…..…...………………………..14
2.1-4 調制光譜的實驗裝置……………………………………...17
2.2 光激發螢光光譜…………………………………………………......20
2.2-1 光激發螢光光譜簡介…………………………………….....20
2.2-2 光激發螢光光譜儀器裝置…………………………….....…22
2.3 拉曼光譜…………………………………………………………......23
2.3-1 簡介……………………………………………………….....23
2.3-2 拉曼散射的量子模型…………………………………….....23
2.3-3 拉曼的選擇規則………………………………………….....25
2.3-4 拉曼光譜儀器裝置……………………………………….....27
2.4 X光繞射………........................................29
2.4-1 簡介……………………………………………………….....29
2.4-2 繞射原理………………………………………………….....30
2.4-3 X 光儀器裝置…………………………………………….....32
2.4-4 薄膜晶格常數計算……………………………………….....33
2.4-5 多重結構週期厚度之估算……………………………….....33
2.5 穿透式電子顯微鏡(TEM)……………………………………….................35
2.6 原子力顯微鏡(AFM)表面形貌量測……………………………......37
第三章 以光調制光譜研究砷銻化鎵能隙、表面費米能階以及表面態密
度…………………………………………………………………....40
3.1 簡介………………………………………………………………...40
3.2 樣品準備…………………………………………………………...42
3.3 譜線分析…………………………………………………………...43
3.4 結論………………………………………………………………...46
第四章 以光調制光譜研究In-polar和N-polar不同極性的氮化銦薄膜…………………………………………………………………...........53
4.1 簡介………………………………………………………………...53
4.2 樣品準備…………………………………………………………...54
4.3 譜線分析…………………………………………………………...55
4.4 結論………………………………………………………………...59

第五章 有機金屬化學氣相沉積法成長之錐狀奈米氮化銦的光學特性:光
彈性效應…………………………………………………………....64
5.1 簡介………………………………………………………………...64
5.2 樣品的製備和實驗………………………………………………...65
5.3 結果和討論………………………………………………………...66
5.4 結論………………………………………………………………...70
第六章 InN/GaN多層量子井發光二極體的發光特性……………...…...78
6.1 簡介………………………………………………………………...78
6.2 樣品製備與實驗…………………………………………………...79
6.3 結果與討論…..…………………………………………………….80
6.4 結論……………..………………………………………………….84
第七章 總結…..…………………………………………………………....92

參考文獻…………………………………………………………………….94

[1.1] H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys.
Rev. B 36, 9384, (1987).
[1.2] V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V.
V. Preobrazhenskii and B. R. Semjagin, Superlattices and
Microstructures, 10, 131, (1991).
[1.3] L. T. Canham, Appl. Phys. Lett. 57, 1046, (1990).
[1.4] D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La
Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205, (1996).
[1.5] N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J.
Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A.
E. Zhukov, P. S. Kopev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I.
Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner,
U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743, (1996).
[1.6] D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P.
Basmaji, J. Vac. Sci. Technol. B 14, 2212, (1996).
[1.7] M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett.
59, 677, (1991).
[1.8] H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863,
(1993).
[1.9] R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts,
and H. Aharoni, Phys. Rev. B 37, 4044, (1988).121
[1.10] G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang,J. Appl. Phys. 86, 1765, (1999).
[1.11] J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L.
Lee, W. David, and Z. Hang, Appl. Phys. Lett. 64, 3314, (1994).
[1.12] K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401, (1986).
[1.13] S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444, (1986).
[1.14] R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827,
(1974).
[1.15] A. C. Wright and J. O. Williams, Mat. Letts. 3, 80, (1985).
[1.16] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci.
Intrum. 58, 1429, (1987).
[1.17] F. Bassni and G. P. Parravicini, Electric State and Opitical Transitionin Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, Vol. 2, p. 109, 1980).
[1.18] M. Cardona, in Modulation Spectroscopy, (Academic, New York,
1969).
[1.19] O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston,
Semiconductors and Semimetals, (Academic Press, New York, 36,
221-292, 1992).
[1.20] Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M.
Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th
International Conference on the Physics of Semiconductors,Greece,
(1990).
[1.21] H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors, proc. IRE, vol. 45, pp.1535, 1957.
[1.22] H. T. Yuan, W. V. McLevige, and H. D. Shih, “ GaAs Bipolar Digital Integrated Circuit, in N. G. Einspruch and W. R. Wisseman (eds.), VLSI Electrics icrostructure Science, vol. 11, pp. 173-213, Academic Press, Orlando, 1985.
[1.23] R. Nottenburg, J. C. Bischoff, M. B. Panish, and H. Temkin, “High-speed InGaAs(P)/InP double-heterostructure bipolar transistors, IEEE Electron Device Lett., vol. 8, pp. 282-284, 1987
[1.24] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, IEEE Electron Device Lett. 22 361 (2001).
[1.25] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986)
[1.26] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
[2.1] J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett. 64, 3314, (1994).
[2.2] T. T. Chiang, and W. E. Spicer, J. Vac. Sci. Technol. A 7, 724 (1989).
[2.3] J. Tersoff, Phys. Rev.Lett. 52, 465 (1984).
[2.4] J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett.67, 2350 (1995).
[2.5] R. Bhattacharya, C. Y. Lee, F. H. Pollak, and D. M. Schleich, J. Non-Crystalline Solids 91, 235 (1987).
[2.6] H. Shen, F. H. Pollak, and J. W. Woodall, J. Vac. Sci. Tech. B 8,413 (1990).
[2.7] P. S. Dutta, K. S. Sangunni, H. L. Bhat, and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
[2.8] H. Nakanishi, and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993)
[2.9] M. Sydor, A. Badakhshan, and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
[2.10] O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Bread, and J. Comas, Appl. Phys. Lett. 46, 970 (1985).
[2.11] E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki, and F. H. Pollak, Phys. Lett. 46, 1230 (1981).
[2.12] K. Capuder, P. E. Norris, H. Shen, Z. Hang, and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
[2.13] D. E. Aspnes, Surface Science 37, pp. 418-442 (1973).
[2.14] D.E. Aspones,in Handbook on Semiconductor,edited by T. S. Moss (North-Holland, New York, 1994).
[2.15] F.H.Polak, in Handbook on Semiconductor, edited by M.Balkanski, (North-Holland, New York, 1994).
[2.16] D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973)
[2.17] N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
[2.18] D. E. Aspnes, in Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
[2.19] D. E. Aspnes, Phys. Rev. B 10, 4228 (1974)
[2.20] T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
[2.21] N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
[2.22] Z. C. Feng, A. A. Allerman, P. A. Barnes and S. Perkowitz, Appl. Phys. Lett. 60, 1848(1992)
[2.23] J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao,Y. H.Liu and E. A. Beam, Appl. Phys. Lett. 61, 1927(1992)
[2.24] G. Lucovsky, M. H. Brodsky, M. F. Chen, R. J. Chicotka and A. T. Ward, Phys. Rev. B4, 1945(1971)
[2.25] Koji Yano and Takashi Katoda, J. Appl. Phys. 70,7036(1991)
[2.26] D. P. Bour, J. R. Shealy, A. Ksendzov and Fred Pollak, J. Appl. Phys. 64, 6456(1988)
[2.27] Professor Chihiro Hamaguchi, Basic Semiconductor Physics (Springer,Osaka,Japan March 2001)
[2.28] D.E. Aspnes:Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, In handbook of Semiconductors,Vol.2, edited by M. Balkanski (North-Holland, Amsterdam,1980) pp109-154.
[2.29] K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
[3.1] T. C. McGlinn, T. N. Krabach, and M. V. Klein, Phys. Rev. B, 33, 8396 (1986).
[3.2] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, IEEE Electron Device Lett. 22, 361 (2001).
[3.3] J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1, 3551 (1970).
[3.4] R. M. Cohen, M. J. Cherng, R. E. Benner, and G. B. Stringfellow, J. Appl. Phys. 57, 4817 (1985).
[3.5] J. H. Zhao, IEEE Electron Device Lett. 11, 478 (1990).
[3.7] H. Chouaib, C. Bru-Chevallier, A. Apostoluk, W. Rudno-Rudzinski, M. Lijadi, and P. Bove, Appl. Phys. Lett. 93, 041913 (2008).
[3.8] C. Bru-Chevallier, H. Chouaib, J. Arcamone, T. Benyattou, H. Lahreche, and P. Bove, Thin Solid Films 450, 151 (2004).
[3.9] G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765 (1999).
[3.10] J. S. Hwang, W. C. Hwang, Z. P. Yang, G. S. Chang, J. I. Chyi, and N. T. Yeh, Appl. Phys. Lett. 75, 2467 (1999).
[3.11] J. S. Hwang, G. S. Chang, W. C. Hwang, and W. J. Chen, J. Appl. Phys. 89, 1771 (2001).
[3.12] J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin, and T. L. Lee, Appl. Phys. Lett. 67, 2350 (1995).
[3.13] J. S. Hwang, W. Y. Chou, M. C. Hung, J. S. Wang, and H. H. Lin, J. Appl. Phys. 82, 3888 (1997), and references therein.
[3.14] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Instrum. 58, 1429 (1987).
[3.15] Z. Q. Shi, W. A. Anderson, L. P. Fu, and A. Petrou, Solid-State Electron. 36, 147 (1993).
[3.16] D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
[3.17] See, for example, D. E. Aspnes, in Handbook on Semiconductors, edited by T. S. Moss (North-Holland, New York, 1980), Vol. 2, p. 109, and references therein.
[3.18] X. Yin, F. H. Pollak, L. Pawlowicz, T. O’Neill, and M. Hafizi, Appl. Phys. Lett. 56, 1278 (1990).
[3.19] H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
[3.20] K. I. Lin, H. C. Lin, J. T. Tsai, C. S. Cheng, Y. T. Lu, J. S. Hwang, P. C. Chiu, S. H. Chen, J. I. Chyi, and T. S. Wang, Appl. Phys. Lett. 95, 141914 (2009).
[4.1] W. Walukiewicz, J. W. Ager III, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger: J. Phys. D 39 (2006) R83.
[4.2] H. Neff, O. K. Semchinova, A. M. N. Lima, A. Filimonov, and G.
Holzhueter: Sol. Energy Mater. Sol. Cells 90 (2006) 982.
[4.3] A. Yoshikawa, S. B. Che, W. Yamaguchi, H. Saito, X. Q. Wang, Y.
Ishitani, and E. S. Hwang: Appl. Phys. Lett. 90 (2007) 073101.
[4.4] J. S. Hwang, J. T. Tsai, K. I. Lin, M. H. Lee, C. N. Tsai, H.-W. Lin, S. Gwo, and M. C. Chen: Appl. Phys. Express 3 (2010) 102202.
[4.5] C.-L. Wu, H.-M. Lee, C.-T. Kuo, S. Gwo, and C.-H. Hsu: Appl. Phys. Lett. 91 (2007) 042112.
[4.6] C.-L. Wu, C.-H. Shen, H.-W. Lin, H.-M. Lee, and S. Gwo: Appl. Phys. Lett. 87 (2005) 241916.
[4.7] D. Muto, T. Araki, H. Naoi, F. Matsuda, and Y. Nanishi: Phys. Status
Solidi A 202 (2005) 773.
[4.8] R. Kudrawiec, R. Korbutowicz, R. Paszkiewicz, M. Syperek, and J.
Misiewicz: Opto-Electron. Rev. 12 (2004) 435.
[4.9] R. Katayama, K. Onabe, H. Yaguchi, T. Matsushita, and T. Kondo: Appl. Phys. Lett. 91 (2007) 061917.
[4.10] J. Bhattacharyya and S. Ghosh: Phys. Status Solidi A 204 (2007) 439.
[4.11] S. P. Fu, T. T. Chen, and Y. F. Chen: Semicond. Sci. Technol. 21 (2006) 244.
[4.12] R. Kudrawiec, T. Suski, J. Serafin’czuk, J. Misiewicz, D. Muto, and Y. Nanishi: Appl. Phys. Lett. 93 (2008) 131917.
[4.13] J.-W. Yoon, S. S. Kim, H. Cheong, H.-C. Seo, S.-Y. Kwon, H.-J. Kim, Y. Shin, E. Yoon, and Y.-S. Park: Semicond. Sci. Technol. 20 (2005) 1068.
[4.14] S. Porntheeraphat and J. Nukeaw: Appl. Surf. Sci. 254 (2008) 7851.
[4.15] C.-T. Kuo, S.-C. Lin, K.-K. Chang, H.-W. Shiu, L.-Y. Chang, C.-H. Chen, S.-J. Tang, and S. Gwo: Appl. Phys. Lett. 98 (2011) 052101.
[4.16] X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Appl. Phys. Lett. 89 (2006) 171907.
[4.17] J. S. Hwang, W. C. Hwang, C. C. Chang, S. C. Chen, and Y. T. Lu: J. Appl. Phys. 89 (2001) 396.
[4.18] I. Vurgaftman and J. R. Meyer: J. Appl. Phys. 94 (2003) 3675.
[4.19] S. K. Pugh, D. J. Dugdale, S. Brand, and R. A. Abram: Semicond. Sci. Technol. 14 (1999) 23.
[4.20] M. T. Hasan, A. G. Bhuiyan, and A. Yamamoto: Solid-State Electron. 52 (2008) 134.
[4.21] K. I. Lin, T. S. Wang, Y. T. Lu, and J. S. Hwang: J. Appl. Phys. 99 (2006) 056103.
[5.1] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94 (2003) 2779.
[5.2] H. Lu, W. J. Schaff, L. F. Eastman, C. E. Stutz, Appl. Phys. Lett. 82, (2003) 1736.
[5.3] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 92 (2004) 036804.
[5.4] H. Lu, W. J. Schaff, L. F. Eastman, J. Appl. Phys. 96, (2004) 3577.
[5.5] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, S. J. Pearton, J. Vac. Sci. Technol. B 23, (2005) 1891.
[5.6] O. Briot, B. Maleyre, and S. Ruffenach, Appl. Phys. Lett. 83, (2003) 2919.
[5.7] Y. G. Cao, M. H. Xie, Y. Liu, Y. F. Ng, H. S. Wu, and S. Y. Tong, Appl. Phys. Lett. 83, (2003) 5157.
[5.8] H. Lu, W. J. Schaff, L. F. Eastman, C. E. Stutz, Appl. Phys. Lett. 82 (2003) 1736.
[5.9] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 92 (2004) 036804.
[5.10] I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, J. Furthmuller, F. Bechsteedt, Phys. Rev. B. 96 (2004) 201307.
[5.11] V. Darakchieva, P. P. Paskov, T. Paskova, J. Birch, S. Tungasmita, and B. Monemar, Appl. Phys. Lett. 80 (2002) 2302.
[5.12] T. Prokofyeva, M. Seon, J. Vanbuskrik, M. Holtz, S. A. Nikishin, N. N. Faleev, H. Temkin, and S. Zollner, Phys. Rev. B 63 (2001) 125313.
[5.13] V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, J. Appl. Phys. 82 (1997) 5097.
[5.14] C. L. Wu, J. C. Wang, M. H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83 (2003) 4530.
[5.15] R. Berkowicz, and T. Skettrup Phys. Rev. B 11 (1975) 2316.
[5.16] H. Sasaki, K. Tsubouchi, N. Chubachi, and N. Mikoshiba J. Appl. Phys. 47 (1976) 2046.
[5.17] W. Xinqiang, C. Song-Bek, I. Yoshihiro, and Y. Akihiko, Appl. Phys. Lett. 89 (2006) 171907.
[5.18] J. M. Wagner, F. Bechstedt, Appl. Phys. Lett. 77 (2000) 346.
[5.19] V. Darakchieva, P. P. Paskov, E. Valcheva, T. Paskova, and B. Monemar, Appl. Phys. Lett. 84 (2004) 3636.
[5.20] K. Kim, W. R. L. Lambrecht, B. Segall, Phys. Rev. B 53 (1996) 16310.
[5.21] E. Dimakis, E. lliopoulos, K. Tsagaraki, A. Georgakilas, Appl. Phys. Lett. 88 (2006) 191918.
[5.22] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Scha1, Phys. Rev. B 66 (2002) 201403.
[5.23] S. P. Fu, T. T. Chen, and Y. F. Chen, Semicond. Sci. Technol. 21 (2006) 244.
[5.24] J. Bhattacharyya and S. Ghosh, Phys. Status Solidi A 204 (2007) 439.
[5.25] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94 (2003) 3675.
[5.26] P. Carrier and S. H. Wei, J. Appl. Phys. 97 (2005) 033703.
[6.1] B. Monemar, P. P. Paskov, and A. Kasic, Superlattices Microstruct. 38, 38 (2005).
[6.2] I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim: Appl. Phys. Lett. 91, 133105 (2007).
[6.3] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
[6.4] N. A. Shapiro, H. Feick, W. Hong, M. Cich, R. Armitage, and E. R. Weber, J. Appl. Phys. 94, 4520 (2003).
[6.5] Y. L. Li, Y. R. Huang, and Y. H. Lai, Appl. Phys. Lett. 91, 181113 (2007).
[6.6] W. Lin, S. Li, and J. Kang, Appl. Phys. Lett. 96, 101115 (2010).
[6.7] A. Yoshikawa, S. B. Che, W. Yamaguchi, H. Saito, X. Q. Wang, Y. Ishitani, and E. S. Wang, Appl. Phys. Lett. 90, 073101 (2007).
[6.8] E. Dimakis, A. Yu. Nikiforov, C.Thomidis, L. Zhou, D. J. Smith, J. Abell, C.-K. Kao, and T. D. Moustakas, phys. Stat. sol. (a) 205, 1070 (2008).
[6.9] H. K. Cho, D. C. Kim, B. H. Kong, K. H. Lee, J. T. Oh, S. Kim, D. J. Kim, J. W. Kim, and S. K. Hong, J. Crystal Growth. 281, 349 (2005).
[6.10] D. C. Marra, E. S. Aydil, S.-J. Joo, E. Yoon, and V. I. Srdanov, Appl. Phys. Lett. 77, 3346 (2000).
[6.11] Y. F. Ng, Y. G. Cao, M. H. Xie, X. L. Wang, and S. Y. Tong, Appl. Phys. Lett. 81, 3960 (2002).
[6.12] A. K. Viswanath, E. Shin, J. I. Lee, S. Yu, D. Kim, B. Kim, Y. Choi, and C. H. Hong, J. Appl. Phys. 83, 2272 (1998).
[6.13] G. Gonzalez de la Cruz, J. Appl. Phys. 96, 3752 (2004).
[6.14] S. P. Fu and Y. F. Chen, Appl. Phys. Lett. 85, 1523 (2004).
[6.15] X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 92, 132108 (2008).
[6.16] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. McConville, Phy. Rev. B, 78, 033308 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊