跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭士銘
研究生(外文):Shih-MingKuo
論文名稱:磁場對水熱法成長氧化鋅奈米柱之結構和光學特性研究
論文名稱(外文):Magnetic field effects on the optical and structure properties of Hydrothermal grown ZnO nanorods
指導教授:黃榮俊黃榮俊引用關係
指導教授(外文):Jung-Chun Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:水熱法氧化鋅奈米柱缺陷
外文關鍵詞:hydrothermalZnO nanorodsdefect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用外加磁場於水熱法(hydrothermal)製備氧化鋅奈米柱研究上,首先以0.37g硝酸鋅六水合物(Zinc nitrate hexahydrate)做為鋅(Zn)來源與0.175g環六亞甲基四胺(hexamethylenetetramine, HMT)加入去離子水配成50ml溶液於樣品瓶中,並與加熱系統一起放入螺線環空間,此螺線環可產生磁場,最高值可加至1000gauss,利用數位溫控器將成長溫度設定為90℃於Si基板上成長氧化鋅奈米柱。外加磁場影響下分析不同沉積時間、不同磁場大小、不同成長角度以及磁力大小對奈米柱成長之影響。
由SEM、XRD和PL光譜儀分析,可以知道於外加磁場下成長之氧化鋅奈米柱,由於磁場可以抑制水熱法反應溶液之對流,因而可以降低其缺陷值及改善其結晶性。故經由外加改變磁場可以調變氧化鋅奈米柱之結構及發光性質。

In this research, we manufactured ZnO nanorods arrays by hydrothermal synthesis with external magnetic. First, 0.37g Znic nitrate hexahydrate as the source of Zn and 0.175g hexamethylenetetramine were mixed in 50ml DI water in the beaker. Next, the beaker together with a heater were placed inside a solenoid, which can generate a magnetic field up to 1000G. The ZnO nanorods arrays were grown on the Si substrate at 90℃. We investigated the effect of magnetic field on the structural, and optical properties by changing the strength of magnetic field, the nanorod grown direction with respect to magnetic field, and magnetic force.
From SEM, XRD and photoluminescence spectra analysis, we realized that the crystalline structure of ZnO nanorods can be improved due to the fact that magnetic field can damp the convection and therefore reduce the defects form inside ZnO nanorods.

中文摘要----------------------------------------------------------------I
英文摘要---------------------------------------------------------------II
致謝--------------------------------------------------------------------III
總目錄-----------------------------------------------------------------IV
表目錄----------------------------------------------------------------VII
圖目錄---------------------------------------------------------------VIII
第一章 緒論---------------------------------------------------------1
1.1 簡介-------------------------------------------------------------------------------------------1
1.2 文獻回顧-------------------------------------------------------------------------------------2
1.2.1 磁場對液體影響之理論介紹----------------------------------------------------2
1.2.2 水熱法製備氧化鋅奈米柱------------------------------------------------------6
1.3 研究目的與動機----------------------------------------------------------------------------8
第二章 相關理論介紹---------------------------------------------9
2.1 氧化鋅特性簡介----------------------------------------------------------------------------9
2.1.1 氧化鋅的晶體結構---------------------------------------------------------------9
2.1.2 氧化鋅的光學特性-------------------------------------------------------------10
2.1.3 氧化鋅奈米柱應用-------------------------------------------------------------14
2.1.4 氧化鋅奈米線製備方法-------------------------------------------------------15
2.2 水熱法(Hydrothermal)介紹-------------------------------------------------------------17
2.2.1 水熱法發展與演進--------------------------------------------------------------17
2.2.2 一維氧化鋅奈米線成長機制--------------------------------------------------18
第三章 實驗步驟與儀器介紹----------------------------------19
3.1 實驗流程-----------------------------------------------------------------------------------19
3.2 製程與實驗設備--------------------------------------------------------------------------21
3.2.1離子束濺鍍系統(Ion beam sputter, IBS)---------------------------------------21
3.2.2 水熱法製程系統------------------------------------------------------------------22
3.3量測與分析儀器---------------------------------------------------------------------------24
3.3.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)---------------24
3.3.2 X-ray繞射儀---------------------------------------------------------------------25
3.3.3 光致螢光激發光譜儀(Photoluminescence, PL)------------------------------26
3.3.4 穿透式電子顯微鏡(Transmission electron microscopy, TEM)------------27
第四章 實驗結果與討論-----------------------------------------29
4.1 時間對氧化鋅奈米柱成長特性探討--------------------------------------------------29
4.1.1 SEM形貌分析---------------------------------------------------------------------29
4.1.2 PL光譜分析------------------------------------------------------------------------32
4.2 磁場平行奈米柱生長方向探討--------------------------------------------------------33
4.2.1 SEM形貌分析---------------------------------------------------------------------33
4.2.2 PL光譜分析------------------------------------------------------------------------36
4.2.3 XRD結構分析---------------------------------------------------------------------40
4.2.4 TEM分析---------------------------------------------------------------------------42
4.2.5磁場平行奈米柱生長方向探討之小結----------------------------------------45
4.3 外加磁場下在不同角度成長奈米柱之探討-----------------------------------------46
4.3.1 SEM形貌分析---------------------------------------------------------------------46
4.3.2 PL光譜分析------------------------------------------------------------------------49
4.3.3 XRD結構分析---------------------------------------------------------------------54
4.3.4 TEM分析---------------------------------------------------------------------------55
4.3.5 外加磁場下在不同角度成長奈米柱之探討小結---------------------------57
4.4 磁力對氧化鋅奈米柱成長之探討-----------------------------------------------------58
4.4.1 SEM形貌分析---------------------------------------------------------------------58
4.4.2 PL光譜分析------------------------------------------------------------------------61
4.4.3 XRD結構分析---------------------------------------------------------------------65
4.4.4磁力對氧化鋅奈米柱成長之探討小結----------------------------------------66
第五章 結論--------------------------------------------------------67
附錄---------------------------------------------------------------------68
參考文獻---------------------------------------------------------------76

1.Kind, H., et al., Adv. Mater., 2002. 14(83-122).
2.Law, M., et al., Nat. Matter., 2005. 4(455-459).
3.Wan, Q., et al., Appl. Phys. Lett., 2004. 84(3654-3656).
4.Goldberger, J., et al., J. Phys. Chem. B, 2005. 14(158-160).
5.Huang, M.H., et al., Science, 2001. 292(1897-1899).
6.Panigrahy, B., M. Aslam, and D.S. Misra, Adv. Funct. Mater., 2010. 20(1161-1165).
7.Pang, Z.W., Z.R. Dai, and Z.L. Wang, Science, 2001. 291(1947).
8.Yan, Z., Y. Ma, and D. Wang, 2008. 92(081991).
9.Lupan, O., T. Pauporte, and B. Viana, Adv. Mater., 2010. 22(3298-3302).
10.Qi, J. and N.I. Wakayama, PHYSICS OF FLUIDS, 2004. 16(3450-3459).
11.Landau, L.D. and E.M. Lifshitz, Electrodynamics of Continuous Media. 1960.
12.SAZAKI, G., S.D. DURBIN, and S. MIYASHITA, Jpn. J.Appl.Phys, 1999. 38(842-844).
13.K.H.Tam, C.K.Cheung, and Y.H.Leung, J. Phys. Chem. B, 2006. 110(20865-20871).
14.Djurisic, A.B. and Y.H. Leung, small, 2006. 2(944-961).
15.Shi, S., J. Xu, and X. Zhang, Journal of Applied Physics, 2011. 109(103508).
16.R.C.Lima, L.R.Macario, and J.W.M.Espinosa, J.Phys.Chem.A , 2008. 112(8970-8978).
17.P.X., G. and W. Z.L., J. Phys. Chem. B, 2004. 108(7534).
18.R.A., L. and B. A.A., J. Phys. Chem. , 1960. 64(688).
19.Chen, M., X. Wang, and Y.H. Yu, Applied Surface Science, 2000. 158(134-140).
20.Chen, Y.L., Optical and electrical properties of H doped ZnO nanowires. 2011. Master Thesis National Chen Kung University.
21.Bagnall, D.M., Y.F. Chen, and Z. Zhu, Appl. Phys. Lett. , 1997. 70(17).
22.Fonoberov, V.A., et al., Phys. Rev.B, 2006. 73(165317).
23.Zhang, R., P.-G. Yin, and N. Wang, Solid State Sciences, 2009. 11(865-869).
24.Huang, M.H., Y. Wu, and H. Feick, Adv. Mater., 2001. 13(2).
25.Alvi, N.H., K.u. Hasan, and O. Nur, Nanoscale Research Letters, 2011. 6(130).
26.He, H., Q. Yang, and C. Liu, J. Phys. Chem. C, 2011. 115(58-64).
27.Kao, S.P., Preparation and physical properties of Sb doped ZnO nanostructures. 2011. Master Thesis National Chen Kung University.
28.I.Salish, H.Temkin, and V.Narayanamurti, Phys. Rev.B, 2004. 69(245401).
29.K.Vanheusden, W.L.Warren, and C.H.Seager, J.Appl.Phys., 1996. 79(7983).
30.R.Viswanatha, S.Chakraborty, and S.Basu, J. Phys. Chem. C, 2006. 110(22310).
31.A.B.Djurisic, Y.H.Leung, and K.H.Tam, Nanotechnology, 2007. 18(095702).
32.K.C.Barick and D.Bahadur, J.Nanosci.Nanotechnol., 2007. 7(1935).
33.Dijken, A.v., E.A. Meulenkamp, and D. Vanmaekelbergh, J. Lumin. , 2000. 454(87).
34.K.Vanheusden, C.H. Seager, and W.L. Warren, Appl.Phys. Lett., 1996. 68(403).
35.T.Chen, G.Z.Xing, and Z.Zhang, Nanotechnology, 2008. 19(435711).
36.Y.Zuo, S.Ge, and Z.Chen, J.Alloys Compd., 2009. 470(47).
37.W.Li, D.Mao, and F.Zhang, Nucl.Instrum.Meth.B, 2000. 169(59).
38.Ahmed, F., S. Kumar, and N. Arshi, The Solid Films, 2011. 519(8199-8202).
39.K.H.Tam, C.K.Cheung, and Y.H.Leung, J. Phys. Chem.B, 2006. 110(20865-20871).
40.Li, T., H. Fan, and J. Yi, J. Mater. Chem., 2010. 20(5756-5762).
41.Ando, K., Science, 2006. 312(1883).
42.Yi, J.B., H. Pan, and J.Y. Lin, Adv. Mater., 2008. 20(1170-1174).
43.Yan, Z., Y. Ma, and D. Wang, Appl. Phys. Lett., 2008. 92(081911).
44.J.M.D.Coey, M.Venkatesan, and C.B.Fitzgerald, Nat. Matter., 2005. 4(173).
45.Banerjee, S., M. Mandal, and N. Gayathri, Appl. Phys. Lett., 2007. 91(182501).
46.Meulenkamp, E.A., J.Phys.Chem.B, 1998. 102(5566-5572).
47.J.H.Choi, H.Tabata, and T.Kawai, J.Cryst.Growth, 2001. 226(493).
48.Y.Li, G.W.Meng, and L.D.Zhang, Appl. Phys. Lett., 2000. 76(2011).
49.J.Cui and U.J.Gibson, J.Phys.Chem.B, 2005. 109(22074-22077).
50.Vayssieres, L., Advanced Materials, 2003. 12(5).
51.C.L.Wu, L. Chang, and H.G.Chen, Thin Solid Films, 2006. 498(137-141).
52.D.Almawlawi, K.A. Bosnick, and A. Osika, Adv. Mater., 2000. 12(17).
53.Vayssieres, L., K. Keis, and A. Hagfledt, J. Phys. Chem. B, 2001. 105(3350).
54.Vayssieres, L., K. Keis, and A. Hagfledt, Chem. Mater., 2001. 13(4395).
55.Vayssieres, L., Adv. Mater., 2003. 15(5).
56.Greene, L.E., M. Law, and J. Goldberger, Angew. Chem. Int. Ed., 2003. 42(3031-3034).
57.Law, M., L.E. Greene, and P. Yang, nature materials, 2005. 4(455-459).
58.Jr, S.J.G. and J.H. W, J. Pharm. Sci, 1980. 69(1261).
59.許榮富, 江榮隆, and 李世鴻, 以水熱法成長之氧化鋅奈米柱的離子感測特性研究.
60.http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊.
61.JSM-6700F HR-FESEM Operation Manual. Department of Chemical Engineering National Cheng Kung University
62.Chikazumi, S. and S.H. Charap, Physics and Magnetism. 1972.
63.Fang, F., D. Zhao, and B. Li, J. Phys Chem. C, 2010. 114(12477-12480).
64.Qi, J. and N.I. Wakayama, PHYSICS OF FLUIDS, 2004. 16: p. 3450-3459.
65.Liu, W., W. Li, and Z. Hu, Journal of Applied Physics, 2011. 110: p. 013901.
66.Liu, X., X. Wu, and H. Cao, J. Appl. Phys, 2004. 95(3141).
67.Ahn, C.H., Y.Y. Kim, and D.C. Kim, Journal of Applied Physics, 2009. 105(013502).
68.Djurisic, A.B., Y.H.Leung, and K.H.Tam, Appl. Phys. Lett., 2006. 88(103107).
69.Ahsanulhaq, Q., A. Umar, and Y.B. Hahn, Nanotechnology, 2007. 18(115603).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊