跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇億城
研究生(外文):I-ChengSu
論文名稱:利用調制光譜與光激發螢光光譜研究簡併與非簡併氮化銦間的移轉
論文名稱(外文):The Transformation Mechanism between Degenerate and Non-degenerate InN Studied by PR and PL Spectroscopy
指導教授:黃正雄黃正雄引用關係
指導教授(外文):Jenn-Shyong Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:41
中文關鍵詞:氮化銦調制光譜螢光光譜
外文關鍵詞:InNPhotoreflectancePhotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用光調制反射光譜(Photoreflectance, PR)與光激發螢光光譜(Photoluminescence, PL),量測氮化銦(InN)於溫度15K到300K時由非簡倂(nondegenerate)轉變為簡倂 (degenerate) 半導體的現象。實驗發現InN樣品的PR訊號在溫度高於100K時會消失,因為PR訊號是由於電子-電洞對被電場加速並調制內建電場而造成的,PR訊號消失代表內建電場沒有被調制,故能作出樣品溫度低於100K時為非簡倂半導體、高於100K時為簡倂半導體之結論。藉由光激發螢光光譜並與其他文獻中的資料作比較,計算出在300K時各樣品的自由電子濃度,並依InN導帶的有效態密度求出化學勢(chemical potential)的位置。再由樣品在300 K時的化學勢位置和PR訊號消失時的溫度,並考慮位於導帶下52meV的陷阱態對導帶電子濃度的影響後,我們可以經由理論計算得到陷阱態(trap state)的態密度大小約為1019(cm-3),而電子濃度隨的溫度變化也可以由上面的推導過程同時得到。
The transformation between degenerate and non-degenerate semiconductor of InN at different temperatures is studied by modulation spectroscopy of photoreflectance (PR) and photoluminescence (PL) spectroscopy. The PR features are detectable until the temperature is lower than 100 K. This behavior can be attributed to the transition from degenerated (above 100 K) to nondegenerated semiconductors caused by cooling down the free electrons at temperatures below 100K, such that he photon induced carriers can modulate the build-in electric fields in InN. The chemical potential at 300 K is determined via the effective mass of free-electron. The effective state densities of InN as well as the electron concentration can be estimated from PL energies. From the chemical potential at 300 K, the transition temperature (100 K), and the effect of trap state at 52 meV below the conduction band on the electron concentration and the theoretical calculation, the trap state density deduced is in the order of 1019 cm-3. The dependence of the carrier concentration on temperature is also estimated by the theory.
第一章 簡介 1
第二章 光調制光譜學理論 3
2-1 光調制光譜學理論 3
2-2  低電場調制 4
2-3  中高電場調制 5
第三章 實驗儀器裝置 10
3-1 光調制反射光譜 10
3-2  光激發螢光光譜(PL) 11
第四章 氮化銦的能帶性質研究 15
4-1 樣品結構 15
4-2 光調制反射光譜 (PR)頻譜分析 17
4-3 PL頻譜分析 23
4-4 陷阱能階對化學勢造成的影響 30
4-4-1 氮化銦的能帶態密度 32
4-4-2 有陷阱態時電子在能帶中的分布 32
4-4-3 利用理論計算求Trap的態密度 36
第五章 總結 38
參考文獻 39
[1]Geeta Rani Mutta, Jean Marc Routoure, Bruno Guillet, Laurence Méchin, Javier Grandal, Sara Martin-Horcajo, Tommaso Brazzini, Fernando Calle, Miguel A. Sánchez-García, Philippe Marie, and Pierre Ruterana, Appl. Phys. Lett. 98, 252104 (2011).
[2]S. P. Fu and Y. F. Chen, Appl. Phys. Lett. 85, 1523(2004)
[3]Karlheinz Seeger, Semiconductor Physics
[4]Michel Goiran, Marius Millot, Jean-Marie Poumirol, Iulian Gherasoiu, Wladek Walukiewicz, and Jean Leotin, Appl. Phys. Lett. 96, 52117(2010)
[5]S P Fu, T T Chen and Y F Chen, IoPP. 21, 244–249 (2006)
[6]Kuang-I Lin, Jung-Tse Tsai, I-Cheng Su, Jenn-Shyong Hwang, and Shangjr Gwo, Appl. Phys. Express. 4, 112601 (2011)
[7]D. E. Aspnes, M. Balkanski and ed., Handbook on Semiconductors, Vol. 2, North-Holland, New York, c1980, p. 109; also Surf. Sci. 37, 418 (1973).
[8]N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
[9]D. E. Aspnes, Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
[10]N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
[11]K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986).
[12]S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986).
[13]R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
[14]A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985).
[15]H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987).
[16]F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, Vol. 2, p. 109, 1980).
[17]M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969).
[18]H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts. 52, 2058 (1988).
[19]D. E. Aspnes, in M. Balkanski, Surf. Sci., 37, 418 (1973).
[20]O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston, Semiconductors and Semimetals, (Academic Press, New York, 36, 221-292, 1992).
[21] D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
[22]T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
[23] D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
[24]J. S. Hwang, Y. C. Wang, W. Y. Chou, S. L. Tyan, M. Hong, J. P. Mannaerts, and J. Kwo, J. Appl. Phys. 83, 2857 (1998).
[25]C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).
[26]S P Fu, T T Chen, Y F Chen Semicond. Sci. 21, 244(2006)
[27]A. Kaminska, G. Franssen, T. Suski, I. Gorczyca, N. E. Christensen, A. Svane, A. Suchocki, H. Lu, W. J. Schaff, E. Dimakis, and A. Georgakilas, Phys. Rev. B 76, 075203 (2007).
[28]V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov , V. A. Vekshin, F. Bechstedt , J. Furthmu‥ller, J.Aderhold, J. Graul, A. V. Mudryi , H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Stat. Sol. (b) 234, 787 (2002)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊