跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳振誠
研究生(外文):Cheng-ChenChen
論文名稱:室內建材逸散污染物及通風換氣移除效率之研究
論文名稱(外文):A study on the emission contaminant of interior building materials and the efficiency of it’s removal by ventilation
指導教授:江哲銘江哲銘引用關係
指導教授(外文):Che-Ming Chiang
學位類別:博士
校院名稱:國立成功大學
系所名稱:建築學系碩博士班
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:175
中文關鍵詞:室內建材逸散污染物二次污染物低逸散建材通風換氣移除效率
外文關鍵詞:interior materialsemissions pollutantssecondary pollutantsLow emission materialsventilation removal efficiency
相關次數:
  • 被引用被引用:3
  • 點閱點閱:861
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:2
室內健康環境品質之良窳,直接影響居住使用者之健康及舒適,間接影響人員之工作生產效率及誘發罹病等問題,尤其是人體每日攝入物質量最大來源「室內空氣」,其「室內空氣品質」之健康影響,短期容易產生諸如病態建築徵候群、多重化學物質過敏、氣喘等問題,長期更容易提高致癌風險的可能。而影響「室內空氣品質」之因素眾多,可從「污染來源控制」(源頭控制)及「通風換氣移除」(移除改善)方式進行診斷、改善及評價,本研究以室內主要固定污染源「室內建材」作為探討對象,瞭解不同「室內建材逸散污染物」特性及模式,並調控不同「通風換氣率」進行污染物移除,以建構室內建材污染源及通風改善之關聯研究。

本研究係以實驗室實驗、數值分析、統計分析及文獻比較分析為主要研究方法,實驗分兩部分進行,包括:建材逸散小尺寸環境控制箱實驗法與全尺寸環境控制艙實驗法,用以評價不同室內建材逸散污染物之特性與模式,並探討不同室內建材污染物變化及其通風換氣移除效率。本研究利用「建材環境控制及逸散檢測系統」量測不同室內建材逸散污染物特性,包括複合型建材、高逸散類建材、低逸散類建材..等建材因子變化,探討室內建材逸散一次(原生性)污染物及二次(衍生性)污染物之差異變化。並藉由室內空氣濃度質量平衡模式,進行不同「通風換氣變化及移除效率」之實驗分析,評估不同室內建材逸散污染物之通風換氣移除效率,提出室內建材污染控制及通風換氣移除之效率模式。

實驗結果顯示,室內建材逸散污染物主要以「揮發性有機化合物」及「甲醛」等化學污染物質為主,隨著不同建材污染源逸散變化與時間關係,在溫度設定25℃、相對濕度50%之環境因子設定下,探討全尺寸建材之木地板材及表面塗料之逸散變化,研究比對表面塗料建材中「溶劑型塗料」與「水性塗料」之差異,兩者在逸散因子、濃度變化及衰減特性明顯不同。並以不同全尺寸低逸散建材使用比例(0%、30%、50%、80%、100%)進行逸散變化量測,瞭解建材源頭控制中以低逸散建材控制室內污染物濃度之成效。並進階以大氣常見之「臭氧」物質穩定濃度注入環控箱內,以瞭解「臭氧」與「建材逸散污染物質」之「二次反應」變化,結果顯示水性塗料中逸散之「檸檬烯」物質與空氣中之「臭氧」產生二次反應,形成「甲醛」物質,尤其反應時間越長達到3小時,易產生大量甲醛物質濃度可達2.54倍。
最後研究以不同每小時通風換氣次數(範圍為0-2.0ACH)進行實驗,結果顯示通風換氣移除效率可有效移除不同室內建材逸散污染物,包括建材逸散之一次污染物及二次污染物,顯示「室內空氣品質」從「污染來源控制」(源頭控制)及「通風換氣移除」(移除改善)方式管理,在「污染來源控制」(源頭控制)應積極利用「低逸散建材」置換「高逸散建材」,尤其以建材表面之「塗料」為直接大量逸散污染物來源,影響人員之短期暴露及長期暴露危害問題,其低逸散建材使用比例應提高至50%以上,能有效控制室內污染物的產生。並持續施以「通風換氣移除」(移除改善)方式,藉由通風換氣每小時次數控制在0.5-1.0區間範圍,可最為有效提昇通風換氣效率,尤其是針對建材逸散之一次污染物質及二次污染物質,兩種方式併同執行可確保降低室內健康危害度及致癌風險值,保障室內空氣品質及室內健康環境,並可間接創造人員生產工作效率及經濟效益。
This study employed research methods including laboratory experiment, numerical analysis, statistical analysis and literature comparative analysis. The experiment was conducted in two parts including the small-scale environmental control box experiment of building material fugitive emissions and the full-size environmental control cabin experiment to evaluate the characteristics and modes of different fugitive emissions of the indoor building materials fugitive emissions. It also explored the change of different pollutants of indoor building materials as well as the ventilation removal efficiency. Regarding the experimental testing of the “characteristics and modes of different fugitive emissions of “indoor building materials”, the “building material environmental control box and the fugitive emission detection system” was used to measure the fugitive emission characteristics of different indoor building materials fugitive emissions including single building material, composite building material, small-scale building material, full-sized building material, building material of low fugitive emission, and further explore the different change in the first pollutants and secondary pollutants of fugitive emissions of building materials. Using the indoor air concentration quality balance model, this study conducted the experimental analysis of the “change in ventilation rate and removal efficiency” to evaluate the ventilation removal efficiency of different fugitive emissions of indoor building materials, and proposed the model for indoor building material pollution control and ventilation removal efficiency.
The experimental results suggested that, the fugitive emissions of indoor building materials are composed of chemical pollutants, such as “volatile organic compounds” and “formaldehyde”. According to the relationship between the change of fugitive emissions of different building material pollution sources and time, under the environmental factor setting of temperate at 25℃ and relative humidity at 50%, the emission of volatile organic compounds of “wet building materials” is characterized by rapid emission and fast decay. This study compared the “solvent-based paints” and “water-based paints” in the category of wet building materials in this study, and found the two differ significantly in emission factors, concentration change and decay characteristics.
The emission of “solvent-based paints” is at stable state since the early stage of emission after application until the late stage. However, the concentration of emitted volatile organic compounds and the level of health hazards are higher than the benchmark values. Further discussions on the change in the emissions of the wooden floor and surface paint in the category of full-size green building material have suggested that “water-based paints” is of low emission. However, the emission factors of a variety of volatile organic compounds continue to rise in 48 hours after application. Furthermore, in the experiment, the “ozone” substance in commonly seen the air is input in the environmental control box at a stable concentration level to understand the change of “secondary reactions” of “ozone” and “fugitive emissions of building materials”. The results showed that the “limonene” substances emitted from the “water-based paints” react with the “ozone” in the air to form the substances of “formaldehyde”. The reaction may last for 3 hours and produce a large amount of formaldehyde substances at the concentration level of 2.54 times of the normal. Finally, ventilation experiments were conducted by 0, 0.5, 1.0, 1.5, 1.8 per hour, and found that ventilation can effectively remove different fugitive emissions of indoor building materials, including the first pollutants and the secondary pollutants.
The optimal ventilation time for maximum removal efficiency is in the range of 0.5-1.0 times per hour. This indicates the “indoor air quality” should be managed in two respects of “pollution source control” (source control) and “ventilation removal” (removal improvement). Regarding “pollution source control” (source control), the “building materials of high fugitive emissions” by “building materials of low fugitive emissions” are replaced, in particular, as “paint” on the building material surface is the direct source of large amounts of fugitive emissions, posing the problem of short term and long term exposure of personnel. Moreover, “ventilation removal” (removal improvement) should be continuously applied to control the frequency of ventilation in the range of 0.5-1.0 per hour for most effective improvement in ventilation efficiency. Especially, for the first pollutants and secondary pollutants, the application of two methods can reduce indoor health hazards and carcinogenic risk, improve indoor air quality and healthy indoor environment, as well as indirectly enhance production working efficiency and economic benefits.
第一章 緒論 I-1
1-1研究動機與目的 I-1
1-1-1研究動機 I-1
1-1-2研究目的 I-5
1-2研究範圍與流程 I-8
1-2-1研究範圍 I-8
1-2-2研究流程 I-10
1-3研究內容與方法 I-11
1-3-1研究內容 I-11
1-3-2研究方法 I-12
第二章 室內建材逸散污染物之理論與方法 II-1
2-1室內揮發性有機物質 II-1
2-1-1 揮發性有機物質定義 II-1
2-1-2 室內揮發性有機物質來源及種類 II-1
2-1-3 VOCs對人體健康及舒適之影響 II-2
2-1-4換氣量對揮發性有機物質之影響 II-5
2-2室內建材與揮發性有機物質之關係 II-8
2-2-1 室內建材揮發性有機物質逸散機制 II-8
2-2-2室內建材常見之揮發性有機物質 II-9
2-2-3地板/塗料類建材揮發性有機物質探討 II-12
2-3二次污染物相關研究 II-14
2-3-1一次(Primary)逸散與二次(Secandary)逸散污染 II-14
2-3-2二次(Secandary)污染反應模式 II-15
2-4室內污染物逸散模式 II-16
2-4-1 質量平衡模型 II-16
2-4-2 空調系統與污染物逸散濃度模式 II-19
2-4-3 經驗模型 II-21
2-4-4 物理模式 II-23
2-4-5 環控箱物理模式 II-26
2-5建材逸散檢測方法 II-31
2-5-1 全尺寸環控箱測試法系統概要 II-31
2-5-2 標準方法理論依據 II-32
2-5-3實驗進行步驟 II-33

第三章 探討不同室內建材逸散特性及污染物變化 III-1
3-1建材一次污染物逸散變化分析 III-1
3-1-1全尺寸複合木地板一次污染物逸散實驗設計與說明 III-1
3-1-2 測試建材選定 III-1
3-1-3環境因子設定 III-3
3-1-4實驗設計 III-4
3-1-5全尺寸複合木地板逸散一次污染物之測試結果 III-5
3-1-6 小結 III-20
3-2不同室內低逸散建材使用比例逸散變化與分析 III-22
3-2-1不同室內低逸散建材使用比例逸散變化實驗設計與說明 III-22
3-2-2不同室內低逸散建材使用比例逸散變化實驗結果 III-22
3-2-3不同室內低逸散建材使用比例效益分析 III-26
3-3建材二次反應污染物逸散變化分析 III-28
3-3-1 實木地板臭氧化二次反應污染物逸散實驗設計與說明 III-28
3-3-2 建材逸散與臭氧化二次反應污染物實驗定性結果 III-33
3-3-3 建材逸散一次污染物與臭氧化二次反應關聯研究 III-34
3-3-4臭氧與高/低逸散建材二次污染反應測試分析─甲醛與丙酮特性測試 III-41
3-3-5 不同臭氧濃度與低逸散建材二次污染反應測試分析 III-43
3-3-6 不同臭氧反應時間與低逸散建材二次污染反應測試分析 III-49

第四章 室內建材逸散污染物通風換氣移除效率之探討 IV-1
4-1室內污染物通風移除量測評估計畫 IV-1
4-1-1 全尺寸複合木質地板逸散一次污染物通風換氣移除計畫 IV-1
4-1-2全尺寸複合木質地板二次反應污染物通風換氣移除計畫 IV-2
4-2室內建材逸散污染物通風換氣移除效率之評估 IV-3
4-2-1全尺寸複合木質地板逸散一次污染物通風換氣移除效率 IV-3
4-2-2全尺寸複合木質地板二次反應污染物通風換氣移除效率 IV-10
4-3不同換氣量下建材逸散濃度衰減模式之適用性討論 IV-18
4-3-1 不同換氣量下VOCs逸散濃度衰減模式之適用性討論 IV-19
4-3-2清漆VOCs逸散模式實測值與預測值比對結果 IV-20
4-3-3木質塗料VOCs逸散模式實測值與預測值比對結果 IV-21
第五章 結論與建議 V-1
5-1結論 V-1
5-2建議 V-5

參考文獻 VI-1
附錄 附錄-1
外文部份
1.ASTM D5116-97, “Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions From Indoor Materials/Products,(1997)
2.Aoki, Taisuke; Tanabe, Shin-ichi , Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction , Atmospheric Environment 41 3139–3150,(2007).
3.Berkeley Solar Group Occupancy Patterns and Energy Consumption in New California Houses (1984-1988) California Energy Commission Sacramento, (1990)
4.Brooks,B.O., G.M.Qtter,J.A. Debory and R.D. Schimke,Indoor Air Pollution:an edifice complex,Clinical Toxicology,(1991)
5.Brett C.Singer, Beverly K. Coleman, Hugo Destaillats, Alfred T. Hodgson,et al., Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone Atmospheric Environment Volume 40, Issue 35, November, p.6696-6710,(2006).
6.Chambers,Environment International,Vol.15,p.389-396,(1989)
7.Chou, C.C.K. et al.,“The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment 40: 3898–3908,(2006).
8.Dagmar Schmidt Etkin, Volatile Organic Compounds in Indoor Environments,(1996).
9.Dagmar Schmidt Etkin,IEQ Strategies-Volatile Organic Compounds in Indoor Environment,Cutter Information CORP,(1996)
10.D.P.Wyon,The effects of indoor air quality on performance and productivity,Indoor Air;14:p92-101,(2000)
11.D. Poppendieck, H. Hubbard, M. Ward, C. Weschler, R.L. Corsi., Ozone reactions with indoor materials during building disinfection, Atmospheric Environment 41 3166–3176,(2007)
12.Dols,W.S. and G.N. Walton,CONTAMW 2.0 User Manual .National Institute of Standards and Technology,NISTIR 6921
13.European Commission Joint Research Centre,Indoor Air Quality & it’s Impact on Man,Report NO18:Evaluation of VOC Emissions from Building Products-Solid Flooring Material,(1997).
14.Environmental effects of ozone depletion and its interactions with climate change:2006 assessment
15.E. Uhde, T. Salthammer“Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistryAtmospheric Environment 41 3111–3128,(2007)
16.Guo,Z.,L.E.Sparks,B.A.Tichenor,and J.C.S.Chang, “Predicting the emissions of individual VOCs from petroleum-based indoor coatings,Atmospheric Environment,Vol.32,NO.2,pp.231-237,(1998)
17.G.C.Morrison,R.L.Corsi,H.Destaillats,W.W.Nazaroff,J.R.Wells,Indoor Chemistry:Materials,Ventilation Systems,and Occupant Activities,Proceedings of Healthy Buildings,(2006)
18.Hayter,A.J and Dowling M.M, Experimental Design and Emission Modeling for Chamber Experiment, Atmospheric Environment,Vol.27A,p.2225-2234,(1993)
19.Huey-Jen Su, Pei-Chih Wu, et al. , “Exposure Assessment of Indoor Allergens, Endotoxin, and Airborne Fungi for Homes in Southern Taiwan, Environmental Research Section A 85, 135-144, (2001)
20.H.Levin and A.T.Hodgson,Voc Concentrations of Interest in North American Offices and Homes,Proceedings of Healthy Buildings 2006,(2006)
21.J.C.S.Chang and Z.Guo,Characterization of Organic Emissions From a Wood Finishing Product-Wood Stain,Indoor Air,Vol.2,pp.146-153,(1992)
22.JOHN C. S. CHANG, BRUCE A. TICHENOR, ZHISHI Guo AND KENNETH A. KREBS,Substrate Effects on VOC Emissions from a Latex Paint,indoor Air; 7: 241-247,(1997)
23.J.S.Zhang,G..Nong,C.Y.Shaw,J.M.Wang,Measurements of volatile organic compound(VOC) emissions from wood stains by using an electronic balance,ASHARE Trans.105.Part1,(1999)
24.Levin H,et al. Building materials and indoor air quality. OCCUPATIONAL MEDICINE. (4):67-93,(1989)
25.Little,J.C.,A.T.Hodgson,andA.J.Gadgil. “Modeling emissions of volatile organic compounds from new carpet,Atmospheric Environment,Vol.28,pp.227-234,(1994)
26.L. Antonelli,E. Mapelli,A. Strini,T. Cerulli,R. Leoni and S. Stella,Laboratory and real scale comparative study of benzyl alcohol emissions from a two-component epoxy paint,Proceedings of the 9th International Conference on Indoor Air Quality and Climate – Indoor Air 2002,(2002)
27.Molhave L., “Indoor Air Pollution Due To Organic Gases and Vapors of Solvents in Building Materials, Environment International, Vol.8, p.117-127. , (1982)
28.Matthews, T.G., Wilson D.L., Thompson, A.J., Mason, M.A., Bailey, S.N., and Nelms, L.H., terlaboratory Comparison of Formaldehyde Emission from Particle Board Underlayment in Small Scale Environment Chambers, Journal of the Air Pollution Control Association, Vol. 37, p1320, (1987).
29.M. Maroni et al., “Indoor Air Quality, pp. 443-444, (1995).
30.Nielsen,The importance of building materials and building construction to SBS,(1998)
31.O.A.Seppanen and W.J.Fisk,Summary of responses to ventilation,Indoor Air vol.14 p102-118,(2004)
32.O.A.Seppanen ,W.J.Fisk and O.H.Lei,Ventilation and performance in office work,Indoor Air;16:p28-36,(2004)
33.Pawel Wargocki, The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity , Indoor Air, (10),222-236, (2000)
34.P. Wargocki, J. Sundell, W. Bischof, G. Brundrett, P.O. Fanger, F.Gyntelberg, S.O. Hanssen, P. Harrison, A. Pickering, O. Seppa¨nen, P.Wouters, The role of ventilation in non-industrial indoor environments.Proceedings of Indoor Air 2002, the 9th Indoor Air Quality and Climate, Monterey, USA, (2002).
35.P.-C. Wu, Y.-Y. Li, C.-C. Lee,C.-M. Chiang,Li, H.-J. Su ,risk assessment of formaldehyde in typical office building in Taiwan, Indoor air 2003; 13:1-15,(2003)
36.P.-C. Wu, Y.-Y. Li, C.-M. Chiang, C.-Y. Huang, C.-C. Lee, F.-C. Li, H.-J. Su ,Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings,Indoor Air,Volume15 ,Issue 1 ,Page 19-26 ,January ,(2005)
37.Richard A. Wadden & Peter A. Scheff, “Indoor Air Pollution, pp.105-107, (1982).
38.Shair and Heitner,Reprinted by permission of the American Chemical Society from Environment Science and Technology,(1974).
39.Seifert, B. and Abraham, H.J., “Indoor air concentrations of benzene and some other aromatic hydrocarbons, Ecotoxicology and Environmental safety, 6, p.190-192,(1982)
40.Sterling,E.M.et.al.,ASHRAE Transition V91 Pt13 611-622,(1985).
41.Spark,L.E.,Tichenor,B.A.,and change,J.,Guo,Z.,Gas-Phase Mass Transfer Model for Predicing Volatile Organic Compound(VOC) Emission Rates from Indoor Pollutant Source,Indoor Air,Vol.6,p.31-40,(1996)
42.Seppa¨ nen, OA, Fisk, WJ, Mendell, MJ. Association of ventilation rates and CO2-concentrations with health and other responses in commercial and institutional buildings, Indoor Air, 9, 252–274,(1999)
43.Tapani Tuomi; Bernt Engström; Raimo Niemelä; Juha Svinhufvud; Kari Reijula, ,Emission of ozone and organic volatiles from a selection of laser printers and photocopiers, Applied Occupational and Environmental Hygiene, 15:8, 629 – 634,(2000).
44.T. Mitamuraa,, H. Yoshinob, H. Osawac, Y. Kuwasawac, Investigation of indoor air quality and ventilation rate for sick houses inJapan, Healthy Buildings,P.217-223, (2003).
45.Wolkoff, P. ,Clausen, P.A,Wilkins, C.K.,Nielsen, G.D., Formation of Strong Airway Irritants in Terpene/Ozone Mixtures, Indoor Air,10:82-91,(2000).
46.Weschler, C.J., “Ozone in indoor environments concentration and chemistry. Indoor Air 10: 269-288,(2000).
47.X.Yang,Q.Chen,J.Zeng, J.S.Zhang,C.YShaw,A mass transfer model for simulating volatile organic compound emissions from“wetcoating materials applied to absorptive substrates,International Journal of Heat and Mass Transfer 44 ,p1803-1815,(2001)
48.Yung-Tai Huang, Cheng-Chen Chen, Yaw-Kuang Chen, Che-Ming Chiang, Chia-Yen Lee,Environmental test chamber elucidation of ozone-initiated secondary pollutant emissions from painted wooden panels in buildings, 49.Yang,X, “Study of Building Material Emissions and Indoor Air Quality Ph.D.Thesis.Department of Architecture,MIT,Cambridge,MA 02139-4307
50.Zhihua Fan, Paul Lioy, Charles Weschler et al., Ozone-Initiated Reactions with Mixtures of Volatile Organic Compounds under Simulated Indoor Conditions, Environ. Sci. Technol.37, 1811-1821,(2003).
51.Zhang LZ, Liu JL. Modeling VOCs emissions in the room with a single-zone multi-component multi-layer technique. Building and Environment;39:523–31,(2004)
52.Zuraimi, M.S., Tham, K.W., Chew, F.T., Ooi, P.L.,The effect of ventilation strategies of child care centers on indoor air quality and respiratory health of children in Singapore.Indoor Air, 317-327, (2007).
中文部份(依中文姓氏第一個字筆劃排序)
1.中華民國空氣品質監測報告,(2006)
2.內政部建築研究所,病態建築診斷機制建立計畫,(2007)
3.行政院環境保護署,〝空氣檢驗分析方法建立與驗證-空氣中揮發有機化合物檢驗方法驗證〞,EPA-85-3305-09-02,(1996)
4.行政院環境保護署,〝空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法〞,NIEA A715.11B,( 2000).
5.江哲銘、王文安、周伯丞,建築室內環境保健控制綜合指標之研究,內政部建築研究所,(1999)
6.江哲銘、李俊璋,〝塗料類建材有機逸散物資料庫之建立〞,內政部建築研究所,(2002)
7.江哲銘、李俊璋,〝建材有機逸散物資料庫之建立—地板類建材〞,內政部建築研究所,(2003)
8.江哲銘,全尺寸建材逸散模擬實驗室標準檢測作業程序之研究,內政部建研所,(2005)
9.江哲銘、李彥頤、邵文政、蘇慧貞,相關裝修變因對辦公空間揮發性有機污染物濃度影響分析,建築學報第51期,p1~21,(2005)
10.任憶安、吳萬益、陳麗琴、塗三賢,台灣木質地板市場調查分析,台灣林業科學1997,12(4):451-458,(1997)
11.李芝珊,居家環境和辦公大樓室內空氣品質調查評估,環保署,(1998)
12.李彥頤、江哲銘,辦公空間室內空氣品質管制策略之研究,成大博論,pp.21-36,(2004)
13.李昭興,辦公空間相關變數對揮發性有機化物質濃度影響之研究-以台灣辦公空間為例,成大碩論,(2002)
14.林信旭、江哲銘,以二氧化碳與甲醛污染物探討有效通風控制之研究,成大碩論,pp.58-59,(2002)
15.邵文政,「建材揮發性有機化合物管制策略之研究」,成大建研所博士論文,(2006)
16.沈哲儀,「不同外氣引入量對全尺寸複合木地板揮發性有機物質移除效率之研究」,成大建研所碩士論文,(2007)
17.陳東榮、江哲銘,住宅室內空氣品質(CO、CO2、PM10)現場測定與評估探討,成大建研所碩士論文,(1993)
18.陳念組、江哲銘,建築開口部裝設導風板對自然通風之效益,成大博論,(2007)
19.陳丁于,台灣地區室內環境因子對建材揮發性有機物質逸散行為影響之研究,成大建研所碩士論文,(2002)
20.陳振誠,「台灣本土氣候下換氣率影響建材有機物質逸散特性之研究-以合板及清漆為例」,成大建研所碩士論文,(2004)
21.陳家鋒,「複層建材揮發性有機物質逸散特性之研究-以溶劑型接著劑為例」,成大建研所碩士論文,(2005)
22.張志成、周淑梅,建築室內逸散物質檢測分析研究(一),(1999)
23.經濟部工業局 工業污染防治季刊 July. No.87, (2003)
24.綠建材解說與評估手冊,內政部建築研究所,(2007)
25.劉僑育,「室內不同燈源對於Terepenes化合物與臭氧反應生成二次有機氣膠影響之研究」,國立高雄第一科技大學環境與安全衛生工程所碩士論文,(2006)
26.賴耿陽,多孔材料學(Pore Structure properties of materials),復漢,(1990)
27.鍾基強、吳友烈、陳建郎、陳志豪,通風系統最佳耗能與生命週期及健康風險平衡之研究,行政院國家科學委員會研究計畫,(2005)
28.蘇慧貞、江哲銘、李俊璋,高雄市辦公大樓之室內空氣品質調查與健康危害之評估,高雄市政府環境保護局,(1999)
29.蘇慧貞、江哲銘、李俊璋,室內空氣品質標準於不同建築物之試行評估及管制策略研定,行政院環境保護署專題委託研究計畫,p.31-p.33,(2000)
30.蘇慧貞、江哲銘,室內空氣品質檢測方法之研究,中華民國建築學會「建築學報」第51期,春季號,(2003)
31.龔大瑋,「精油薰燒溢散物及其潛在的氣狀及粒狀二次污染物之定性及定量分析研究」,成大建研所碩士論文,(2006)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top