跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳厚任
研究生(外文):Hou-JenChen
論文名稱:利用ADS-B Downlink評估替代導航系統於民航應用之效能
論文名稱(外文):Performance Analysis of the Alternate Aviation Navigation System Using ADS-B Downlink
指導教授:詹劭勳
指導教授(外文):Shau-Shiun Jan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:民航研究所
學門:運輸服務學門
學類:航空學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:63
中文關鍵詞:廣播式自動回報監視廣域多點定位時差定位法精度稀釋因子
外文關鍵詞:Automatic Dependent Surveillance-Broadcast (ADS-B)Wide Area Multilateration (WAM)Time Difference of Arrival (TDOA)Dilution of Precision (DOP)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
全球定位系統(Global Positioning System, GPS)為新一代民航通訊、導航、監視與飛航管理系統(Communication, Navigation, Surveillance and Air Traffic Management, CNS/ATM)中的核心設備,負責CNS/ATM系統中的航空資訊與通訊網路的精確時間校正、各航機的即時精確位置計算與進場降落之導航。然而,GPS訊號很微弱,容易受到周圍存在蓄意與非蓄意的無線電干擾(Radio Frequency Interference, RFI),當GPS訊號受到無線電干擾,以致於GPS無法提供導航與時間校正的服務時,將會對CNS/ATM系統的運作造成相當程度的威脅。所以為了支援全球定位系統服務中斷時,CNS/ATM系統能於台北飛航情報區(Flight Information Region, FIR)提供持續不中斷的服務,研發民航替代導航系統是必要的。
本論文提出的替代導航系統,將採用美國聯邦航空局新一代民航定位、導航與時間替代系統(Alternative Position, Navigation and Time, APNT)構想中提出的廣域多點定位(Wide Area Multilateration, WAM)架構,利用廣播式自動回報監視(Automatic Dependent Surveillance-Broadcast, ADS-B)設備以及透過時差定位法(Time Difference of Arrival, TDOA)的定位演算法取得位置與導航相關資訊。為了評估本研究提出的APNT系統是否有能力符合應用於民航系統上的安全需求,本論文將使用圓型機率誤差分析(Circle of Error Probability, CEP)和Cramer-Rao下限(Cramer-Rao Lower Bound, CRLB)方法評估APNT的定位效能。此外,對於無線電定位系統而言,地面參考參考站的幾何分佈為影響定位效能重要因素之一,因此本論文中將計算水平精度稀釋因子(Horizontal Dilution of Precision, HDOP),評估CNS/ATM系統中的ADS-B地面參考站分佈,對於台北飛航情報區APNT定位效能的影響程度。
Global Positioning System (GPS) is the enabling technology of the next generation Communication, Navigation, Surveillance, and Air Traffic Management (CNS/ATM) system for civil aviation applications including the time synchronization of the air data network, the air communication network, and aircraft navigation for approach and landing. However, the GPS signal is weak so that it is vulnerable to both intentional and unintentional Radio Frequency Interference (RFI). If the GPS signal is interfered intentionally or unintentionally, it would be a significant impact on the normal CNS/ATM system operation. Therefore, an alternate aviation navigation system is proposed in this research to maintain the CNS/ATM system operation in Taipei Flight Information Region (FIR) when the positioning quality of the GPS signal is bad or when the GPS signal is simply unavailable.
The alternate aviation navigation system adopts the Wide Area Multilateration (WAM) structure which is one of the backup navigation concepts for the Alternative Position, Navigation and Timing (APNT) system. In this thesis, the WAM structure is implemented with the Automatic Dependent Surveillance-Broadcast (ADS-B) system by the Time Difference of Arrival (TDOA) method. The performance of the alternate aviation navigation system is evaluated by the Cramer-Rao lower bound (CRLB) and the Circular Error Probability (CEP). Moreover, another key factor of the radio navigation system performance, the geometric distribution of the ground stations, is discussed. Specifically, the effects of the geometric distributions are presented by the Horizontal Dilution of Precision (HDOP) and the level of positioning performance for Taipei Flight Information Region (FIR).
摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
中英文縮寫對照表 XII
第一章 緒論 1
1.1 新一代民航通訊、導航、監視與飛航管理系統 (Communication, Navigation, Surveillance and Air Traffic Management, CNS/ATM) 3
1.2 廣播式自動回報監視系統 (Automatic Dependent Surveillance-Broadcast, ADS-B) 4
1.3 民航定位、導航與時間替代系統 (Alternative Position, Navigation and Time, APNT) 6
1.4 廣域多點定位 (Wide Area Multilateration, WAM) 8
1.5 文獻回顧 11
1.6 論文架構 12
第二章 無線電定位原理與演算法介紹 13
2.1 無線電定位原理 13
2.1.1 抵達時間法 (Time of Arrival, TOA) 14
2.1.2 時差定位法 (Time Difference of Arrival, TDOA) 15
2.2 時差定位演算法 17
2.2.1 泰勒級數演算法 17
2.2.2 Chan氏演算法 20
2.3 本章總結 22
第三章 替代導航系統效能評估方法 23
3.1 Cramer-Rao 下限法 (Cramer-Rao lower bound, CRLB) 23
3.2 圓形機率誤差法 (Circle of Error Probability, CEP) 25
3.3 精度稀釋因子 (Dilution of Precision, DOP) 26
3.4 本章總結 28
第四章 模擬結果與討論 29
4.1 時差定位演算法模擬定位 30
4.1.1模擬定位結果 31
4.1.1.1 航班A定位結果 31
4.1.1.2 航班B定位結果 34
4.1.1.3 航班A與航班B定位結果比較 37
4.1.2 評估系統定位效能 38
4.1.2.1 航班A定位效能 39
4.1.2.2 航班B定位效能 43
4.1.2.3 航班A與航班B定位效能比較 47
4.1.3 距離量測值雜訊對於模擬定位結果的影響 48
4.2 地面參考站幾何分佈分析 52
4.3 本章總結 56
第五章 結論與未來工作 58
5.1 結論 58
5.2 未來工作 59
參考文獻 60
[1]Eldredge L., “Alternative Positioning, Navigation & Timing (PNT) Study, In Proceedings of International Civil Aviation Organisation Navigation Systems Panel (NSP) Working Group Meetings, Montreal, Canada, May 2010.
[2]Lo S.C. and Enge P., “Capacity Study of Two Potential Alternative Position Navigation and Timing (APNT) Technologies for Aviation, In Proceedings of the ION Institute of Navigation International Technical Meeting, San Diego, CA, USA, Jan. 24-26, 2011.
[3]Yanovsky, F.J., “Automated Dependent Surveillance: Aircraft position and weather data. In Proceedings of Enhanced Surveillance of Aircraft and Vehicles (ESAV), Capri, Italy, Sep. 3-5, 2008.
[4]Rappaport T.S., Reed J.H. and Woerner B.D., “Position location using wireless communications on highways of the future, IEEE Communications Magazine, Vol. 34, Issue:10, pp. 33-41, 1996.
[5]Enge P., Walter T., Pullen S., Kee C., Chao Y.C. and Tasi Y.C., “Wide Area Augmentation of the Global Positioning System Proceedings of the IEEE, Vol. 84, Issue:8, pp. 1063-1088, Aug. 1996.
[6]Enge, P., “Local Area Augmentation of GPS for the Precision Approach of Aircraft. Proceedings of the IEEE, Vol. 87, Issue:1, pp. 111-132, Jan. 1999.
[7]Eldredge L., Enge P., Harrison M., Kenagy R., Lilly R., Lo S., Loh R., Narins M., and Niles R., “GNSS Vulnerability and Alternative PNT. GPS World, Jul. 1st, 2010.
[8]Lo S.C. and Enge P., “Preliminary Assessment of Alternative Navigation Means for Civil Aviation. In Proceedings of the ION Institute of Navigation International Technical Meeting, San Diego, CA, USA, Jan. 25-27, 2010.
[9]Narins M.J., Eldredge L.V., Enge P., Lo S.C., Harrison M.J., and Kenagy R., “Alternative Positioning, Navigation & Timing (PNT) Study. In Proceedings of the International Civil Aviation Organization Navigation Systems Panel (NSP) Working Group Meetings, Montreal, Canada, May 9-20, 2011.
[10]Lo S.C., Peterson B., Akos D., Narins M., Loh R. and Enge P., “Alternative Position Navigation & Timing (APNT) Based on Existing DME and UAT Ground Signals. In Proceedings of the ION Institute of Navigation Global Navigation Satellite Systems Conference, Portland, USA, Sep. 19-23, 2011.
[11]Kim E., “Investigation of APNT Optimized DME/DME Network Using Current State-of-the-Art DMEs. In Proceedings of IEEE/ION PLANS, Myrtle Beach, South Carolina, USA, Apr. 24-26, 2012.
[12]Enge, P., Global Positioning System: Signals, Measurements, and Performance; Ganga-Jamuna Press, Lincoln, 2001.
[13]Hanson J. and Stanley B., “Assessing the safety of WAM over a non-radar surveillance area. In Proceedings of Enhanced Surveillance of Aircraft and Vehicles (ESAV), Capri, Italy, Sep. 12-14, 2011.
[14]James C., “Multilateration: Radar’s Replacement? Avionics, pp. 30-34, Apr. 1st, 2007.
[15]Pei X., Huang Z., Zhu Y. and Liu W., “Research on the Relationship between DOP and the Number of Stations for Multilateration System. In Proceedings of the Information Theory and Information Security (ICITIS), pp. 786-789, Dec. 17-19, 2010.
[16]Carroli J.V., “Vulnerability Assessment of the U.S. Transportation Infrastructure that Relies on the Global Positioning System. Processing of The Journal of Navigation, Vol. 56, Issue:02, pp. 185-193, May 2003.
[17]Chan Y.T. and Ho K.C., “A Simple and Efficient Estimator for Hyperbolic Location. Processing of IEEE Transactions on Signal, Vol. 42, Issue:8, pp. 1905-1915, Aug. 1994.
[18]Foy W.H., “Position-Location Solutions by Taylor-Series Estimation, Processing of IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-12, Issue:2, pp. 187-194, Mar. 1976.
[19]Torrieri D.J., “Statistical Theory of Passive Location Systems, Processing of IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-20, Issue:2, pp. 183-198, Mar. 1984.
[20]Aatique M., Evaluation of TDOA techniques for position location CDMA systems, Master degree Thesis, Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements, Electrical Engineering, 1997.
[21]Becker K., “An efficient method of passive emitter location, Processing of IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, Issue:4, pp. 1091-1104, 1992.
[22]Kaune R., “Gaussian Mixture (GM) Passive Localization using Time Difference of Arrival (TDOA). Proceedings of GI Jahrestagung, Vol. 154, pp. 2375-2381, Jan. 2009.
[23]Jan S.S. and Enge P., “Finding source of electromagnetic interference (EMI) to GPS using a network of sensors. In Proceedings of ION National Technical Meeting (NTM), Long Beach, CA, USA, 2001.
[24]Circular Error Probable (CEP), Air Force Operational Test and Evaluation Center Technical, Vol. 2, Issue:6, pp. 1, Jul. 1987.
[25]Bard J.D. and Ham F.M., “Time Difference of Arrival Dilution of Precision and Applications. Proceedings of IEEE Transactions on Signal Processing, Vol. 47, Issue:2, pp.521-523, Feb. 1999.
[26]Shin D.H. and Sung T.K., “Comparisons of Error Characteristics between TOA and TDOA Positioning. Proceedings of IEEE Transactions on Aerospace and Electronic systems, Vol. 38, Issue:1, pp.307-311, Jan. 2002.
[27]Chen, H.J. and Jan S.S., “Evaluation of APNT using ADS-B Radio. In Proceedings of the International Global Navigation Satellite Socity IGNSS Symposium, Sydney, Australia, Nov. 15-17, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top