跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴巧怡
研究生(外文):Chiau-YiDai
論文名稱:複合型微混合器在外部激擾下之混合機制及特性
論文名稱(外文):Mechanisms and Performance of Hybrid Micro-Mixer under External Excitation
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:主動式微混合器混合腔激擾頻率倍頻激發控制
外文關鍵詞:active micro-mixermixing chamberexcitation frequencymultiple frequency control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
微流體之混合機制在實驗室晶片(lab-on-a-chip, LOC)或微型整合分析系統(micro total analysis system, µ-TAS)等微系統整合應用方面扮演重要角色。因為流體在微流道下屬於低雷諾數範圍(Re〈1),此時流體呈現層流特性,因此過去十幾年以來有許多文獻提出各種不同激發裝置之控制方法,但其應用方面均有所限制,且大多是探討控制機制對於流體混合的影響,鮮少考慮結合主動式控制配合不同幾何形狀微混合器設計之交互影響。本研究探討一種倍頻激發之創新型控制機制,其主要關鍵是調整兩入口流體的激發頻率,設定其中一邊的頻率為另一邊頻率的固定倍率,以達到將同相混合控制與反相混合控制交錯脈動之模式,讓先後發生於一個混合序列中的流體,產生不同的混合型態,並將其運用在Y型微管道連結方形混合腔之複合型(hybrid)微混合器上,探討微管道內之流場演變,與其對流體混合之影響。研究結果顯示,複合型微混合器在雙激發同相控制模式與單激發控制模式下,激擾頻率變化對於流場轉換之過程可劃分為:(1)大環流區、(2)同向小環流區以及(3)脈動流區等三種流場結構來改變流體之混合效果。而倍頻同相激發控制下之混合效能與其他控制模式比較顯現出,在搭配特定倍率下,流體於Y型微管道內可以先形成層疊結構達到預混之效果,並在外部激擾下產生大尺度流體脈動,於主混合腔內形成流體拉伸現象,產生環流結構進行二次混合效應,以增強微混合器之整體性能。實驗數據顯示,以五倍頻同相激發控制下流體達到穩定混合之時間較短且於激盪過程中所反映出的混合指標變異性可以明顯降低,當激擾頻率一邊為20 Hz而另一邊為4 Hz,於激擾時間t=1.398秒時混合指標最高可達0.949且達穩定混合之時間僅需1.780秒。另一方面,兩流體也可藉由搭配五倍頻同相激發之控制模式僅以Y型微混合器達到完善之混合狀態,且其與流體以複合型微混合器所得的混合指標值之演變、大小均相近。這顯示出本研究所構想的五倍頻同相激發控制時可以減去額外空間配置,僅以簡單之Y型管道之流道設計來完成完善混合之狀態。同時本研究也探討微混合器在運用五倍頻訊號控制下,以最佳頻率組合進行雙激發驅動訊號相位角差異與入口流體雷諾數變化之混合現象,並證實其為流體混合特性中之重要控制因子。
Mixing control plays an important role in micro-fluid chip applications, such as Lab-on-a-Chip (LOC) or Micro Total Analysis Systems (µ-TAS). Because the flow at micro-scale is highly laminar, several flow control schemes for complete mixing in the micro-channels were proposed in the past decades. While most papers investigate the influence of control schemes on mixing, few of them consider about the interaction of active control applying to different geometries of the micro-mixers. So this paper proposes an innovative control scheme of multiple frequency control, and investigates the mixing phenomenon and efficiency when multiple frequency control is applied to the micro-mixer in the combination of Y-mixer and a square mixing chamber to obtain a mixing method that contains in-phase mixing control and out-of-phase mixing control in interlaced mode in a mixing sequence. The key of the control scheme is to adjust the excitation frequency: let the excitation frequency from one side becomes the fixed ratio of frequency from the other side, and it is easy to apply with most of the flow driving devices. The mixing phenomenon shows that when the hybrid micro-mixer under double side excitation and single side excitation, the flow field and mixing index can be divided into three regions due to the formation of (I) large recirculation, (II) small recirculations with the same direction and (III) pulsating flow, while the hybrid micro-mixer under quintuple frequency control can achieve primary mixing at the Y-mixer by flow lamination and secondary mixing in the mixing chamber by forming a large recirculation with small fringes. The results show that the complete mixing of 0.949 can be accomplished with excitation frequency of fA=20 Hz and fB=4 Hz, and the response time of fluids to external excitation is only 1.780 seconds. In summary, the micro-mixer owns not only the good and rapid mixing but better time variation of mixing index under quintuple frequency control. Furthermore, the mixing index that varies with time at micro Y-mixer is similar to that hybrid micro-mixer, that is, complete mixing of fluids can be achieved only with micro Y-mixer to eliminate the need of additional space of mixing chamber. At the same time, this research investigates the mixing phenomenon of fluids in the hybrid micro-mixer about different driving signal phase delay and Reynolds numbers under appropriate flow control with the corresponding optimal combination of excitation frequency, and confirms that driving signal phase delay and Reynolds numbers are important control factors to fluids mixing behavior.
目錄 I
表目錄 IV
圖目錄 V
第一章 緒論 1
1.1 背景簡介 1
1.2 微流體混合原理(Microfluidic Mixing) 2
1.3 微混合器 2
1.3.1 被動式微混合器 4
1.3.2 主動式微混合器 9
1.4 研究動機與目的 21
第二章 微混合器設計與混合機制 22
2.1 微混合器設計 22
2.2 微混合器混合機制 25
2.3 電腦數值控制(computer numerical control, CNC)銑床 27
2.4 壓電蜂鳴片(Piezoelectric Ceramic Element)驅動原理 27
2.5 參數因次分析 31
2.5.1 白金漢π定理 31
2.5.2 無因次參數 32
第三章 元件加工與實驗儀器設備、方法 35
3.1 微流道加工與封裝 35
3.2 壓電蜂鳴片封裝 37
3.3 實驗設備 38
3.3.1 控制與感測系統 40
3.3.2 微混合器系統 42
3.3.3 影像擷取系統 43
3.4 工作流體 44
3.5 實驗方法與實驗分析 47
3.5.1 工作液體前置準備 47
3.5.2 微壓力感測器的校正 47
3.5.3 微混合器之混合特性實驗控制條件 49
3.5.4 微混合器影像觀測與混合指標分析 51
第四章 實驗結果與討論 53
4.1 不同干擾源激發電壓之混合現象 53
4.2 不同控制模式下之混合特性研究 57
4.2.1 雙激發同相控制 57
4.2.2 單激發控制 69
4.2.3 倍頻同相激發控制 77
4.2.4 五倍頻同相激發控制 84
4.3 五倍頻激發控制在不同相位角差異下之混合現象 97
4.4 五倍頻同相激發控制在不同雷諾數下之混合現象 104
第五章 結論 108
第六章 建議及未來研究方向 111
參考文獻 112

[1]D. Liepmann, A. P. Pisano, and B. Sage, Microelectromechanical systems technology to deliver insulin, Diabetes Technology & Therapeutics, vol. 1, 1999.
[2]N. Y. Lee, M. Yamada, and M. Seki, Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification, Analytical and Bioanalytical Chemistry, vol. 383, pp. 776-782, 2005.
[3]W. H. Tan, Y. Suzuki, N. Kasagi, N. Shikazono, K. Furukawa, and T. Ushida, A Lamination Micro Mixer for μ-Immunomagnetic Cell Sorter((Special Issue)Bioengineering), JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, vol. 48, pp. 425-435, 2005/12/15 2005.
[4]S. Y. Yang, F. Y. Cheng, C. S. Yeh, H. Y. Lei, and G. B. Lee, Synthesis of gold nanoparticles using a vortex-type micro-mixing system, presented at the Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009.
[5]N. T. Nguyen, Micromixers fundamentals, design and fabrication: William Andrew Inc., 2008.
[6]L. Capretto, W. Cheng, M. Hill, and X. Zhang, Micromixing Within Microfluidic Devices. vol. 304, B. Lin, Ed., ed: Springer Berlin / Heidelberg, 2011, pp. 27-68.
[7]C. Y. Lee, C. L. Chang, Y. N. Wang, and L. M. Fu, Microfluidic Mixing: A Review, International Journal of Molecular Sciences, vol. 12, pp. 3263-3287, 2011.
[8]N. T. Nguyen and Z. Wu, Micromixers—a review, Journal of Micromechanics and Microengineering, vol. 15, p. R1, 2005.
[9]A. A. S. Bhagat, E. T. K. Peterson, and I. Papautsky, A passive planar micromixer with obstructions for mixing at low Reynolds numbers, Journal of Micromechanics and Microengineering, vol. 17, p. 1017, 2007.
[10]D. Gobby, P. Angeli, and A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers, Journal of Micromechanics and Microengineering, vol. 11, p. 126, 2001.
[11]A. Golia, P. K. Sahu, A. K. Sen, and P. Muthukumar, Investigations of a micro-mixer with and wihout indentations along the mixing channel 2011.
[12]M. Hoffmann, N. Raebiger, M. Schlueter, S. Blazy, D. Bothe, C. Stemich, and A. Warnecke, Experimental and numerical investigations of T-shaped micromixers.
[13]N. Kockmann, C. Föll, and P. Woias, Flow regimes and mass transfer characteristics in static micromixers, San Jose, CA, USA, 2003, pp. 319-329.
[14]S. H. Wong, M. C. L. Ward, and C. W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sensors and Actuators B: Chemical, vol. 100, pp. 359-379, 2004.
[15]M. A. Ansari and K. Y. Kim, A numerical study of mixing in a microchannel with circular mixing chambers, AIChE Journal, vol. 55, pp. 2217-2225, 2009.
[16]Y. C. Chung, Y. L. Hsu, C. P. Jen, M. C. Lu, and Y. C. Lin, Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab on a Chip, vol. 4, pp. 70-77, 2004.
[17]J. J. Chen, W. Z. Liu, J. D. Lin, and J. W. Wu, Analysis of filling of an oval disk-shaped chamber with microfluidic flows, Sensors and Actuators A: Physical, vol. 132, pp. 597-606, 2006.
[18]R. A. Truesdell, P. V. Vorobieff, L. A. Sklar, and A. A. Mammoli, Mixing of a continuous flow of two fluids due to unsteady flow, Physical Review E, vol. 67, p. 066304, 2003.
[19]Y. Ma, M. Fields, C. P. Sun, F. Zhang, J. C. Liao, Y. Li, B. M. Churchill, and C. M. Ho, Design of Microfluidic Mixer Utilizing Pressure Disturbances, in Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st IEEE International Conference on, 2006, pp. 1303-1306.
[20]I. Glasgow and N. Aubry, Enhancement of microfluidic mixing using time pulsing, Lab on a Chip, vol. 3, pp. 114-120, 2003.
[21]K. F. Lei and W. J. Li, Microfluidic mixing by fluidic discretization, in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 1537-1540 Vol. 2.
[22]W. B. Mao and J. L. Xu, Micromixing enhanced by pulsating flows, International Journal of Heat and Mass Transfer, vol. 52, pp. 5258-5261, 2009.
[23]K. Sugano, H. Yoshimune, A. Nakata, Y. Hirai, T. Tsuchiya, and O. Tabata, High-speed pulsed mixing with high-frequency switching of micropump driving and its application to nanoparticle synthesis, in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011, pp. 1773-1776.
[24]C. L. Sun and J. Y. Sie, Active mixing in diverging microchannels, Microfluidics and Nanofluidics, vol. 8, pp. 485-495, 2010.
[25]黎康熙, 利用入口脈動流之主動式微混合器研究, 碩士論文, 航空太空工程學系, 國立成功大學, 2006.
[26]D. J. Laser and J. G. Santiago, A review of micropumps, Journal of Micromechanics and Microengineering, vol. 14, p. R35, 2004.
[27]M. Hamadiche, J. Scott, and D. Jeandel, Temporal stability of Jeffery–Hamel flow, Journal of Fluid Mechanics, vol. 268, pp. 71-88, 1994.
[28]K. C. Sahu and R. Govindarajan, Stability of flow through a slowly diverging pipe, Journal of Fluid Mechanics, vol. 531, pp. 325-334, 2005.
[29]S. Y. Yang, J. L. Lin, and G. B. Lee, A vortex-type micromixer utilizing pneumatically driven membranes, Journal of Micromechanics and Microengineering, vol. 19, p. 035020, 2009.
[30]L. S. Jang, S. H. Chao, M. R. Holl, and D. R. Meldrum, Resonant mode-hopping micromixing, Sensors and Actuators A: Physical, vol. 138, pp. 179-186, 2007.
[31]金晶精密有限公司. CNC銑床加工.
[32]洪正翰, 無閥式壓電蜂鳴片微幫浦, 碩士論文, 機械工程系, 國立雲林科技大學, 2004.
[33]陳政慰. 2006, 壓電蜂鳴器之簡介. 164.
[34]H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method: Longman Scientific & Technical, 1995.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top