跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳景堯
研究生(外文):Chin-YaoChen
論文名稱:利用三維交錯微管道生成油滴與雙重包覆液滴之研究
論文名稱(外文):Generation of Oil Droplets and Double Emulsions in Tangentially Crossing Microchannels
指導教授:李定智
指導教授(外文):Denz Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:油滴三維交錯微管道雙重包覆
外文關鍵詞:Oil droplet3-D cross microchannelDouble Emulsion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
微全分析系統(μ-TAS)研究的發展與應用下,以微機電系統技術 (MEMS)製作實驗檢測設備的小尺度微管道液滴裝置雖然具有體積小、成本低、檢測樣本只需少量等優點,但隨著近年來不同的應用面逐步發展而結構複雜化,致使其雖擁有上述優點,仍需許多裝置配合運作。
本研究利用經設計的兩基本結構二維微管道進行上下疊合,整合成在製作與構型上仍能相對簡易的三維微管道,並以三維交錯微管道為主體結構的構型,先進行以往相較於水滴生成困難的油滴生成之研究;藉由疊合而成的三維管道結構降低管壁在油滴生成時的影響力,並改變工作流體的流量大小做為產生不同油滴尺寸與頻率的依據,結果顯示該三維結構微管道能進一步在相同尺寸的管道中以較高的流量比達成生成油滴尺寸的極小化與對應極大的生成頻率;接著在整體管道結構的上段部分增加水滴生成的結構,進行以油滴包覆水滴的生成實驗,探討該結構是否擁有生成雙重包覆液滴的可能性,本研究結果也顯示經由控制各相流量的比例與其對應的生成機制,能達成各種不同尺寸的液滴包覆型態,未來在整合於單一結構的液滴生成應用上能有更多元的可能。

On the development and application of micro total analysis system (μ-TAS) study, Micro-Electro-Mechanical System (MEMS) facilitates the microchannel inspection device with a small size,low cost,small volume of samples and reagents and so on.However, in recent years,gradually developed which led to structure sophicated,although it has the above
advantages which have still many devices to meet operational.
In this study,the two-dimensional structure up and down through the design superimposed and integrated into the still in production and configuration is relatively simple three-dimensional configuration,and three-dimensional cross microchannels for the main structure of the configuration.The first of all,it generated in the past compared with the water droplets generated difficulties in the oil droplets. The results showed that by reduce the influence of the wall and change the flow rate of working fluid to control the droplet size and generate frequency can further in the channel of the same size to reach droplets size minimization at a higher flow and the corresponding great to frequency.And then, in the upper section to add the water droplets formation structure to investigate whether the structure has generated the possibility of double emulsions. The results also shows that the formation mechanism by control flow ratio and corresponding formation mechanism can reach a variety of different size double emulsion type,that also integration in a single structure in the future to have more possibility.

摘要................I
Abstract................ II
目錄................IV
表目錄................VII
圖目錄................VIII
符號說明................XII
第一章 緒論................1
1-1 前言................1
1-2 研究動機................2
1-3 研究目的................4
1-4 文獻回顧................5
1-4-1 液滴的產生................5
1-4-2 Double Emulsion的產生................6
第二章 基礎理論與微管道構型設計................8
2-1 流體在微尺度元件中的流動特性................8
2-2 應用理論基礎................12
2-2-1 流體阻力(Flow-resistance)................12
2-2-2 毛細數 (Capillary number, Ca)................13
2-2-3 液滴受力................14
2-2-4 流體聚焦(Flow-focusing)................15
2-3 微管道構型設計................16
2-3-1 產生液滴的管道構型................16
2-3-2 產生Double Emulsion的管道構型................17
第三章 實驗系統設定................19
3-1 黃光微影製程................19
3-1-1 SU-8光阻母模製作................19
3-1-2 PDMS管道製作................25
3-1-3 管道接合................26
3-2 實驗系統架構................27
3-2-1 實驗設備配置................27
3-2-2 實驗方法................28
3-2-3 實驗基本操作程序................30
3-2-4 工作流體的配置與界面活性劑的選擇................34
3-2-5 液滴生成的尺寸測量與頻率計算................34
第四章 結果與討論................36
4-1 2DT、2DC與3DC管道的初步測試結果................ 37
4-1-1 兩相流體於三種管道構型的流動狀態................37
4-1-2 界面活性劑對三種管道中流體的影響................40
4-2油滴生成之測試................43
4-2-1 3DC-T管道的油滴生成................43
4-2-2 油滴生成之機制................45
4-2-3 在兩相之中固定流量下油滴生成的尺寸與頻率................47
4-2-4 Ca、Re與液滴之關係................50
4-2-5 界面活性劑比例對油滴生成尺寸的變化................51
4-2-6 管道構型中二維與三維十字型對油滴生成的影響................52
4-3 Double Emulsion的產生測試................53
4-3-1 管道構型中三維交錯十字結構對包覆水滴的影響................53
4-3-2 T-3DC-T管道的Double Emulsion生成型態與趨勢............56
4-3-3 F-3DC-T管道的Double Emulsion生成型態與趨勢............57
4-3-4 Double Emulsion的良率控制................59
4-4 管道親疏水性對液滴生成的影響................62
4-5 實驗誤差原因與探討................64
第五章 結論................66
5-1 總結................66
5-2 未來展望................68
參考文獻................70

1.M.S. Talary, J. P. H. Burt , P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies, Parasitology, 117, 191-203, 1998.
2.M. A. Burns, B. N. Johnson, S. N.Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo , D. T. Burke, “AnIntegrated Nanoliter DNA Analysis Device, Science, 282, 484-487, 1998.
3.W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, “Droplet-based Micro Oscillating-flowPCR Chip, Journal of Micromechanics and Microengineering , 15, 1369-1377, 2005.
4.T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel network, Lab on a chip, 2, 24-26, 2002.
5.K. Hiratsuka, A. Bohno and H. Endo, “Water droplet lubrication between hydrophilic and hydrophobic surfaces,Journal of Physics, Conference Series, 89, 012012, 2007.
6.S.K. Chae, C.H. Lee, S.H. Lee, T.S. Kim and J.Y. Kang, “Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase,Lab on a chip, 9, 1957-1961, 2009.
7.W.A. Bauer, M. Fischlechner, C. Abell and W.T. Huck, “Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions, Lab on a chip, 10, 1814-1819 , 2010.
8.T. Thorsen, R.W. Roberts, F.H. Arnold and S.R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Physical Review Letters, 86, 4163-4166, 2001.
9.S. van der Graaf, M.L.J. Steegmans, R.G.M. van der Sman, C.G.P.H. Schroën and R.M. Boom, “Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification,Colloids and Surfaces A, Physicochemical and Engineering Aspects, 266, 106-116 , 2005.
10.J. Tan, J.H. Xu, S.W. Li and G.S. Luo, “Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up, Chemical Engineering Journal, 136, 306-311, 2008.
11.J.H. Xu, S.W. Li, J. Tan and G.S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluidics and Nanofluidics, 5, 711-717, 2008.
12.H. Liu, Y.H. Zhang, “Droplet formation in a T-shaped microfluidic junction, Journal of Applied Physics, 106. 034906, 2009.
13.蘇仁彥,「二維與三維十字型微管道之液滴生成研究」,國立成功大學航空太空工程研究所碩士論文,民國100年7月。
14.T. Nisisako, S. Okushima and T. Torii, “Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system, Soft Matter, 1, 23, 2005.
15.A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone and D.A. Weitz , “Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537-541, 2005.
16.S. H. Huang, W. H. Tan, F. G. Tseng and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems, Journal of Micromechanics and Microengineering, 16, 2336-2344, 2006.
17.Y. H. Lin, C. H.Lee and G. B.Lee, “Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications, Journal of Microelectromechanical systems, 17, 3, 2008.
18.H.C. Berg and E.M. Purcell, “The physics of chemoreception, Biophysics, 20, 193-219, 1997.
19.S. Wereley, “Nano-Bio-Micro fluids tutorial, Nanotechuology, 2004.
20.O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels, Philosophical Transactions of the Royal Society of London, 174, 1883.
21.X. F. Peng, G. P. Peterson and B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel, Experimental Heat transfer, 7, 249-264, 1994.
22.Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture, Journal of Fluids Engineering, 121, 1999.
23.P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators, Cryogenics, 23, 273-277, 1983.
24.F. M. White, “Viscous Fluid Flow, 3rd ed McGraw. Hill, New York, (2006).
25.P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up , Lab on a Chip, 6, 437-446, 2006.
26.S.L. Anna, N. Bontoux and H.A. Stone, “Formation of dispersions using flow focusing in microchannels, Applied Physics Letters, 82, 364 , 2003.
27.C. C. Chang, Z. X. Huang and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels, Journal of Micromechanics and Microengineering, 17, 1479-1486, 2007.
28.W. Kern, D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology, RCA Review, 187-190, 1970.
29.G.W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures, Journal of Vacuum Science & Technology A: Vacuum Surface and Films, 8 ,1857-1863, 1990.
30.N. LaBianca and J. Delorme, “High aspect ratio resist for thick film application, Proceedings of SPIE, 2438, 846-852, 1995.
31.A. Gunther and K.F. Jensen, “Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab on a chip, 6, 1487-1503, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top