跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉政
研究生(外文):Wei-ChengHuang
論文名稱:利用改良式模糊控制於磁浮平台之動態控制驗證
論文名稱(外文):Dynamic Ball and Plate Control Verification on Magnetic Suspension Platform using Enforced Fuzzy Logic Control
指導教授:林清一林清一引用關係
指導教授(外文):Chin-E. Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:158
中文關鍵詞:模糊控制混合式磁浮
外文關鍵詞:Fuzzy Logic ControlMagnetic Suspension
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是提出一種改良式強力型的模糊邏輯控制器,並將它應用在磁浮平台系統做動態控制驗證。這個具有2個自由度的磁浮平台主要是透過混合式磁浮致動器來推動,同時透過強力型的模糊邏輯控制律,根據球的位置誤差與位置誤差的微分項,來決定致動器的控制力道,讓球滾到目標點。使用這種強力型的模糊邏輯控制器,相較於傳統的模糊邏輯控制器,可以大幅降低最大超越量,並縮短達到穩定狀態的時間,改善整個系統的穩定表現。此外也利用Euler-Lagrange 方程式來推導球與平台的運動方程式,並藉由商業化的觸控板作為球位置感測器,透過微處理器產生脈波寬度調變類型的控制訊號後,經由訊號放大器放大控制訊號,來推動混合式磁浮致動器。最後藉由任意位置的追蹤與圓軌跡追蹤兩種測試,來驗證磁浮平台的動態控制表現。
This dissertation presents an enforced fuzzy logic control (EFLC) implementation on a ball and plate system (B&P) for dynamic control verifications. A two degree-of-freedom (DOF) platform is constructed for experiments using hybrid magnetic suspension (MS) actuators. The EFLC adds an enforcing rule to buffer the running ball to approach the target. It reduces the overshoot, shortens the settling time, and improves the overall performance significantly. The mathematical model of the ball and plate operation is derived through the Euler-Lagrange equation. Using a commercial touch panel as position sensor, a microprocessor controller is implemented on the proposed system to generated PWM current outputs to activate the MS actuators. The tests verify the random position tracking and circular trajectory tracking performance on the MS B&P under different conditions.
ABSTRACT IN CHINESE i
ABSTRACT x
CONTENTS xi
LIST OF TABLES xiv
LIST OF FIGURE xv
NOMENCLATURE xix

CHAPTER I
INTRODUCTION 1
1.1 Introduction 1
1.2 Literature Survey 3
1.3 Motivation 4
1.4 Dissertation Contribution 5
1.5 Dissertation Outline 5
CHAPTER II
DEVELOPMENT OF THE BALL AND PLATE SYSTEM 7
2.1 Ball and Plate System 7
2.1.1 Design and Consideration of Hybrid Mode MS Actuator 8
2.2 Dynamic Model Derivation of Platform 13
2.2.1 The Proposed Assumptions 13
2.2.2 Mathematical Model 16
2.2.3 Simulation of Dynamic Equations 24
2.2.4 Simplification of Dynamic Equations 27
2.2.5 Simplification of Simplified Dynamic Equations 28
2.3 Dynamic Model Derivation of Hybrid Mode MS Actuator 31
2.3.1 Electromagnetic Force 31
2.3.2 Dynamic Analysis of the Hybrid Mode MS Actuator 37
2.4 Conclusion Remark 44
CHAPTER III
DEVELOPMENT OF THE BALL AND PLATE CONTROL HARDWARE 45
3.1 The Proposed Control System Architecture 45
3.2 MCU MSP430F169 47
3.2.1 Architecture 47
3.2.2 Flexible Clock System 48
3.2.3 Timer_A/Timer_B 50
3.2.4 Embedded Emulation 57
3.3 Signal Amplifier 59
3.3.1 Photocoupler 60
3.3.2 MOSFET 62
3.3.3 Surge Protection 65
3.4 Touch Panel 68
3.4.1 Specifications 68
3.4.2 Calibration 70
3.4.3 Reported Point Packet 71
3.5 Conclusion Remark 75
CHAPTER IV
DESIGN OF BFLC AND EFLC FOR BALL AND PLATE CONTROL SOFTWARE 76
4.1 Application of BFLC in Ball and Plate Control System 77
4.1.1 Architecture of BFLC 77
4.1.2 Application of BFLC in Ball and Plate Control System 79
4.1.3 Stability Analysis 82
4.2 Application of EFLC in Ball and Plate Control System 90
4.2.1 Application of EFLC in Ball and Plate Control System 90
4.2.2 Improvement 92
4.3 Fuzzification and Defuzzification 94
4.3.1 Fuzzification 94
4.3.2 Defuzzification 96
4.4 Tracking Missions 98
4.4.1 Random Position Tracking 98
4.4.2 Circular Trajectory Tracking 100
4.5 Conclusion Remark 103
CHAPTER V
SYSTEM VERIFICATION 104
5.1 Sampling Rate 104
5.2 PWM Signals Calibration 105
5.3 Random Position Tracking 107
5.3.1 Position (0, 0) tracking with BFLC 107
5.3.2 Position (0, 0) tracking with EFLC 116
5.3.3 Position (-7, -7) tracking with EFLC 126
5.4 Circular Trajectory Tracking with EFLC 135
5.5 Conclusion Remark 146
CHAPTER VI
CONCLUSIONS 148
6.1 Conclusions 148
6.2 Suggestions for Further Work 149
6.2.1 The Existing System Problems 149
6.2.2 Further Work 150
REFERENCES 151
PUBLICATION LIST 156
VITA 158

[1] Awtar S., Bernard C., Boklund N., Master A., Ueda D. and Craig K., “Mechatronic Design of a Ball-on-Plate Balancing System, Mechatronics, Vol. 12, No. 2, 2002, pp. 217-228.
[2] Fan X. Z., Zhang N. Y. and Teng S. J., “Trajectory Planning and Tracking of Ball and Plate System using Hierarchical Fuzzy Control Scheme, Fuzzy Sets and Systems, Vol. 144, No. 2, 2004, pp. 297-312.
[3] Moreno-Armendariz, M. A., Perez-Olvera, C. A., Rodriguez, F. and Rubio, E., “Indirect Hierarchical FCMAC Control for the Ball and Plate System, Neurocomputing, Vol. 73, No. 13-15, 2010, pp. 2454–2463.
[4] Yuan, D. and Zhang, Z., “Modeling and Control Scheme of the Ball-Plate Trajectory-Tracking Pneumatic System with a Touch Screen and a Rotary Cylinder, IET Control Theory and Applications, Vol. 4, No. 4, 2010, pp. 573–589.
[5] Lin, C. E. and Ker, C. C., “Control Implementation of a Magnetic Actuating Ball and Plate System, International Journal of Applied Electromagnetics and Mechanics, Vol. 27, No. 1-2, 2008, pp. 133–151.
[6] Nakashima, H., “The superconducting magnet for the maglev transport system, IEEE Transactions on Magnetics, Vol. 30, No. 4, 1994, pp. 1572-1578.
[7] Kim, O. S., Lee, S. H. and Han, D. C., “Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing, IEEE Trans. Ind. Electron., Vol. 50, No. 2, 2003, pp. 374-378.
[8] Nagaya, K. and Ishikawa, M., “ A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators, IEEE Trans. Magn., Vol. 31, No. 1, 1995, pp. 885-896.
[9] Tang, D. M., Gavin, H. P. and Dowell, E. H., “Study of airfoil gust response alleviation using an electro-magnetic dry friction damper. Part 2: experiment, J. Sound Vib., Vol. 269, No. 3-5, 2004, pp. 875-897.
[10] Powell, J. R. and Danby, G. T., “Maglev vehicles-raising transportation advnces of the ground, IEEE Transactions on Potentials, Vol. 15, No. 4, 1996, pp. 7-12.
[11] Kuo, H. C. and Wu, L. J., “An image tracking system for welded seams using fuzzy logic, Journal of Materials Processing Technology, Vol. 120, 2002, pp. 169-185.
[12] Dong, X. C., Zhang, Z. and Chen, C. “Applying Genetic Algorithm to On-Line Updated PID Neural Network Controllers for Ball and Plate System, Proceedings of the 4th International Conference on Innovative Computing, Information and Control, Kaohsiung City, Taiwan, December 2009, pp. 751–755.
[13] Sinaga, E. F., Manurung, E. B., Chee, V. A. and Djajadi, A. “Building and Controlling a Ball and Plate System, Proceedings of the 2nd International Conference on Advances in Communication, Network, and Computing, Bangalore, India, March 2011, pp. 600–608.
[14] Kuo, B. C., Automatic control systems, Prentice-Hall International, Inc., 1991.
[15] Hung, J. Y., “Magnetic bearing control using fuzzy logic, IEEE Transactions on Industry Applications, Vol. 31, 1995, pp. 1492-1497.
[16] Kim, S. W. and Lee, J. J., “Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets Systems, Vol.7, 1995, pp. 359-367.
[17] Lin, C. T. and Jou, C. P., “GA-based fuzzy reinforcement learning for control of a magnetic bearing system, IEEE Trans. Syst. Man Cybern. B Cybern., Vol. 30, No. 2, 2000, pp. 276-289.
[18] Zadeh, L. A., “Fuzzy sets, Information Control, Vol. 8, 1965, pp. 338-352.
[19] Gupta, M. M. and Yamakawa, T., Fuzzy computing theory hardware and applications, Netherlands, 1991.
[20] Rad, A. B. and Chan, P. T. and Lo, W. L., “An Online Learning Fuzzy Controller, IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, 2003, pp. 1016–1021.
[21] Lin, C. E., Lee, L. A., “Dynamic Controls for Magnetic Suspension Application, Recent Advances in Motion Control (Book), Nikkan-Kygyo Publishing Co., Tokyo, Japan, December 25, 1990, pp. 103-111.
[22] 陳奕宏,“混合磁浮避震器控制實現,國立成功大學航空太空工程研究所 碩士論文,民國95 年。
[23] Hirota, K., Industrial applications of fuzzy technology, South Sea Int. Pre. Ltd., 1993.
[24] Cendra, H., Etchechoury, M. and Ferraro, SJ., “Impulsive control of a symmetric ball rolling without sliding or spinning, Journal of Geometric Mechanics, Vol. 2, No. 4, 2010, pp. 321–342.
[25] Lin, C. E., Jou, H. L., “Force Model Identification for Magnetic Suspension Systems via Magnetic Field Measurement, IEEE Trans. on Instrumentation and Measurement, Vol. IM-42, No. 3, June 1993, pp. 767-771.
[26] Hurley, W. G. and Walfle, W. H., “Electromagnetic Design of a Magnetic Suspension System, IEEE Trans. On Education, Vol. 40, 1997, pp. 124-130.
[27] Lin, C. E., Huang, W. C. and Chang, Y. C., “Hybrid Mode Control in Improvement to Magnetic Suspension Ball and Beam System, Journal of System Design and Dynamics, Vol. 4, No. 5, 2010, pp. 738-753.
[28] MSP430F169 Datasheet, Texas Instruments Products Inc., Texas, 2011. Available on web:
http://ti.com/
[29] 孫宗瀛,許益敏,林政緯,TI MSP430混和信號微控器入門,全華科技圖書股份有限公司,2006年12月,ISBN 957-21-5597-0。
[30] Sanya, T. O., Hove, M., Shyders, A. J. and Ferreira, H. C., “Surge protection of communication equipments for power line communication: Effects on communication signal, IEEE AFRICON Conference, September 13-15, 2011.
[31] Samaras, K., Sandberg, C., Salmas, C. J. and Koulaxouzidis, A., “Electrical surge-protection devices for industrial facilities - A tutorial review, IEEE Transactions on Industry Applications, Vol. 43, No.1, 2007, pp. 150-161.
[32] Welzel, F. and Cuetis, P., “Surge protection: Surge voltage protection: All-round safety, Engineering Technology, Vol. 7, No. 9, 2004, pp. 18-21.
[33] Mamdani, E. H., “Applications of fuzzy algorithms for simple dynamic plants, Proc. IEE, 121, 1974, pp. 1585-1588.
[34] Kuo, Yi-Pin and Li, Tzuu-Hseng S., “A Composite EP-based Fuzzy Controller for Active Suspension System, International Journal of Fuzzy Systems, Vol. 2, No. 3, 2000, pp. 182-190.
[35] Boverie, S., Demaya, B. and Titli, A., “Fuzzy logic control compared with other automatic control approaches, Proc. of the 30th Conf. on Decision and Control, Brighton, England, 1991, pp. 1212-1216.
[36] Yang, P., Zhang, Q., Li, L. B., “Design of Fuzzy Weight Controller in Single-Axis Magnetic Suspension System, IEEE Proceedings of the 4th World Congress on Intelligent Control and Automation, Jun 10-14, 2002, pp. 3027-3030.
[37] Tzes, A., Chen, J. C., Peng, P. Y., “Supervisory Fuzzy Control Design for a Magnetic Suspension System, IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference, Vol.1, 1994, pp. 138-143.
[38] Li, T. H. S. and Shieh, M. Y., “Switching-type fuzzy sliding mode control of a cart-pole system, Mechatronics, Vol. 10, 2000, pp. 91-109.
[39] Lin, L. C. and Gau, T. B., “Feedback linearization and fuzzy control for conical magnetic bearings, IEEE Transactions on Control Systems Technology, Vol. 5, 1997, pp. 471-426.
[40] 李允中,王小璠,蘇木春,模糊理論及其應用,全華科技圖書股份有限公司,2003年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top