( 您好!臺灣時間:2021/07/30 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Deformation of Red Blood Cells and Dynamic Behavior in the Vessel
指導教授(外文):San-Yih Lin
外文關鍵詞:red blood cellrheologyimmersed boundary methodpressure correction method
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
由彈簧模型模擬紅血球(RBC)細胞膜骨架以及研究在微管中紅血球之流變學。紅血球細胞膜之模型藉由拉伸/壓縮和彎曲彈簧放置於三角形元素上,分別表示剪切平面和平面彎曲的變形,並考慮紅血球細胞膜的面不可壓縮性和紅血球的體積約束條件。紅血球細胞膜彈性總能量是由拉伸/壓縮、彎曲、總面積和局部面積彈性能量所求得的數值。在靜態血液中,紅血球呈雙凹型彈簧模型已被獲得,藉由調整彈簧常數和體積約束條件。再依沉浸邊界壓力修正法(IB PISO scheme)模擬微血管管流之流場。將紅血球與微血管管流結合,分別探討紅血球在U型及Y型微血管的動態分析。
A spring model is applied to simulate the skeleton of a red blood cell (RBC) membrane and to study the RBC rheology in a micro-tube. An RBC membrane is modeled by an assembly of triangular elements in which stretch/compression and bending springs is placed to express planar shear and out-of-plane bending deformation, respectively. The areal incompressibility of the membrane and a volumetric constraint of the RBC are taken account. The total elastic energy of the RBC membrane is evaluated by the stretch/compression, bending, total areal, and local areal elastic energies. The biconcave RBC in static plasma has been captured in this spring model by adjusting the spring constants and its volumetric constraint. Then, an immersed-boundary (IB) pressure correction method is developed to simulate the flow-fields of the micro-tube flows. The history of the RBC shape changes and the flow structures of the RBC rheology in the micro-tube are investigated. In this paper, we interesting rheology in the U- and Y-shaped micro-tube.
中文摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XIII
第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 3
1.3 內容大綱 5
第二章 紅血球和血液簡介 6
2.1 紅血球的生成 6
2.2 紅血球的組織 7
2.3 血液的組成 8
2.4 血液流體 9
2.5 紅血球的形變與血液黏滯性的關係 10
第三章 數值方法 11
3.1 彈性彈簧網格模型(Elastic spring network model ) 11
3.2 非結構三角形網格(Unstructured Triangular Mesh) 17
3.3 統御方程式 19
3.4 PISO演算法(Pressure-Implicit with Splitting of Operators Scheme) 20
3.5交錯網格(Staggered Grid) 25
3.6沉浸邊界法(Immersed Boundary Method) 26
3.7邊界條件 27
3.7.1 固體邊界條件 27
3.7.1 不可壓縮流場的入口和出口邊界條件 28
第四章 程式驗證 29
4.1 球體之非結構三角形網格(Unstructured Triangular Mesh) 29
4.2 雙凹圓盤狀紅血球模型 30
4.3 U和Y型管流場 32
4.3.1 U型管流場 32
4.3.2 Y型管流場 33
第五章 結果與討論 35
5.1 紅血球在U型管的流動 36
5.2紅血球在Y型管的流動 38
5.3結果整理 40
第六章 結論 41
參考文獻 43
表 46
圖 47
自述 78

1.T.W. Pan and T. Wang, “Dynamical simulation of red blood cell rheology in micro-vessels, International Journal of Numerical Analysis and Modeling, Vol. 6, No. 3, pp.455-473, 2009.
2.W.X. Huang, C.B. Chang, and H.J. Sung, “An improved penalty immersed boundary method for fluid-flexible body interaction, Journal of Computational Physics, Vol.230, 12, pp.5061-5079, 2011.
3.S. Wada and R. Kobayashi, “Numerical simulation of various shape changes of a swollen red blood cell by decrease of its volume, Trans JSME Ser A, 69(677), pp.14-21, 2003.
4.K.I. Tsubota and S. Wada, “Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane's natural state, International Journal of Mechanical Sciences, 52(2010), pp.356-364, 2010.
5.S.Y. Lin, Y.H. Chin, J.J. Hu, and Y.C. Chen, “A pressure correction method for fluid-particle interaction flow: Direct-forcing method and sedimentation flow, International Journal for Numerical Methods in Fluids 2011, 67, pp.1771-1798, 2011.
8.M.L. Ellsworth, C.G. Ellis, D. Goldman, A.H. Stephenson, H.H. Dietrich, and R.S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone, Physiology, 24, pp.107-116, 2008.
9.周先樂(2001),人體生理學 上冊,台北:藝軒出版社,頁341-397。
10.O.K. Baskurt and H.J. Meiselman, “Blood rheology and hemodynamics, Seminars in Thrombosis and Hemostasis, Vol. 29, No. 5, pp.435-450, 2003.
11.Y. Qiu, J.M. Tarbell, “Numerical simulation of Pulsatile flow a compliant curved tube model of a coronary artery, Journal of Biomechanical Engineering, Vol. 122, pp.77-85, 2000.
12.M.R.H. Nobari and E. Amani, “A numerical investigation of developing flow and heat transfer in a curved pipe, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 19, No. 7, pp.847-873, 2009.
15.M.P. Wiedeman, “Dimensions of Blood Vessels from Distributing Artery to Collecting Vein, Circulation Research, 12, pp.375-378, 1963.
17.H. Minamitani, T. Kawamura, and C. Oshio, “Analysis of elasticity and deformability of erythrocytes using micro-channel flow system and atomic force microscope, Microtechnologies in Medicine and Biology, 1st Annual International, Conference On. 2000, pp.68-71, 2000.
18.S.R. Keller and R. Skalak, “Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., Vol. 120, pp.27-47, 1982.
19.R.M. Hochmuth, R.E. Waugh, “Erythorcyte membrane elasticity and viscosity, Ann. Rev. Physiol., 49, pp.209-219, 1987.
20.S. Chien, “Red cell deformability and its relevance to blood flow, Ann. Rev. Physiol., 49, pp.177-192, 1987.
21.N. Mohandas and P.G. Gallagher, “Red cell membrane: past, present, and future, Blood, 112, pp.3939-3948, 2011.
22.S.M. Hosseini and J.J. Feng, “A particle-based model for the transport of erythrocytes in capillaries, Chemical Engineering Science, 64, pp.4488-4497, 2009.
23.N. Maeda, “Erythrocyte rheology in microcirculation, Japanese Journal of Physiology, 46, pp.1-14, 1996.
24.E. Evans, Y.C. Fung, “Improved measurements of the erythrocyte geometry, Microvascular Research, 4, pp.335-347, 1972.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top