跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林京翰
研究生(外文):Ching-HanLin
論文名稱:多孔性介質中氫氣擴散燃燒之特性研究
論文名稱(外文):Study of Diffusion Combustion with Hydrogen Using Porous Media Burner
指導教授:賴維祥賴維祥引用關係王振源王振源引用關係
指導教授(外文):Wei-Hsiang LaiWei-Hsiang Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:氫氣燃燒多孔性介質燃燒室擴散火焰逆水氣轉移
外文關鍵詞:Hydrogen CombustionPorous Media BurnerDiffusion FlameReverse Water Gas Shift
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討氫氣擴散火焰於多孔性介質燃燒室中之特性,並利用其特性進行逆水氣轉移反應之可行性研究。實驗參數包括多孔性介質堆疊塊數(1~4塊)、孔徑大小(15、30PPI)、燃氣進氣流率(3~8 L/min)、當量比(0.25~2)、H2/CO2比(1、3、5)。量測參數為燃燒室的軸向溫度分佈、多孔性介質介面的徑向溫度分佈以及二氧化碳轉化率,並且以影像觀測燃燒室中火焰面,了解多孔介質對火焰的影響。由實驗結果得知,擴散火焰較預混火焰有更廣泛的燃氣操作範圍。在本研究設定的當量比範圍內(當量比=0.25~2),進料的條件越貧油,燃燒室整體的溫度分佈越高。然而當空氣進氣流率固定時,改變氫氣進氣流率對燃燒室整體溫度無顯著之影響。在逆水氣轉移的實驗中,降低氫氣進氣流率,提高H2/CO2比與當量比能提高二氧化碳之轉化率。在參數H2=4 L/min、H2/CO2=5有最高的二氧化碳轉化率(31.6%)。氫氣擴散火焰於多孔性介質之燃燒特性值得更進一步的研究,期望能更深入了解擴散火焰與多孔性介質之間互相影響的關係,並將其廣泛的應用於現有的燃燒系統中。
This research investigates the characteristic of hydrogen diffusion flame and the practicability of the reverse water gas shift reaction in the porous media burner. Experimental parameters included the flow rate of the fuel (3~8 L/min), equivalence ratio (0.25~2), stacked number (1~4 piece), the pore size of the porous media (15, 30 PPI), and the H2/CO2 ratio (1, 3, 5). The measurements of the temperature variation of axial direction of burner and the radial direction of the interface between two porous media, the CO2 conversion efficiency were carried out. Moreover, the flame front in the porous media burner was observed to understand the influence of porous media on the flame characteristic. It was found that the operable range of the hydrogen diffusion flame in the porous media burner was larger than that of the premixed flame. The temperature becomes higher when the equivalence ratio (0.25~2) was more close to the lean-burn conditions. However, effects of hydrogen flow rate were not significant when the air flow rate was fixed. From the test of the reverse water gas shift reaction, decreasing the hydrogen flow rate or increasing the H2/CO2 ratio and the equivalence ratio increased the CO2 conversion efficiency. The highest CO2 conversion efficiency was 31.6% when hydrogen flow rate was 4 L/min and H2/CO2 ratio was 5. The result shows that it can be found at some particular conditions of the hydrogen diffusion flame with porous media burner, but it needs to be further studied in order to apply it to a present combustion system.
中文摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 基本原理與文獻回顧 5
2-1 專有名詞 5
2-1-1 火焰特性的定義 5
2-1-2 定當量條件與當量比 5
2-1-3 可燃極限 6
2-1-4 火焰之穩定性 6
2-2 氫氣燃燒 7
2-2-1 基本原理 7
2-2-3 噴流擴散火焰 9
2-3 多孔性介質 10
2-3-1 材料特性 11
2-3-2 熱傳與燃燒機制 11
2-3-3 多孔性介質之應用 14
2-4 其他相關文獻回顧 15
2-5 研究目的 18
第三章 實驗設備 19
3-1 實驗設備配置 19
3-2 燃燒爐結構 19
3-2-1 進氣段 19
3-2-2 燃燒段 20
3-2-3 尾氣段 20
3-2-4 多孔性介質之選用與配置 21
3-3 冷卻裝置 21
3-4 燃料與空氣供應設備 21
3-4-1 氣體供應裝置 22
3-4-2 流量控制器 22
3-5 多頻即時氣體分析儀 23
3-6 控制與擷取系統 23
3-6-1 控制與擷取程式 24
3-6-2 溫度量測系統 24
3-6-3 影像擷取裝置 25
3-7 實驗參數規劃 25
3-7-1 影像觀測 26
3-7-2 燃燒室溫度分佈 27
3-7-3 逆水氣轉移反應 27
3-7-5 二氧化碳轉化效率計算 28
3-8 實驗流程 29
第四章 結果與討論 30
4-1 氫氣擴散火焰於多孔性介質中之燃燒特性 30
4-1-1 初期實驗 30
4-1-1-1 預混火焰與擴散火焰於燃燒室之特性 30
4-1-1-2 不同進氣方式對燃燒室之影響 32
4-1-2 燃燒室之影像觀測 33
4-1-2-1 進氣條件之影響 34
4-1-2-2 多孔性介質堆疊塊數之影響 35
4-1-2-3 多孔性介質孔徑之影響 36
4-1-3 燃燒室內軸向溫度分布 37
4-1-3-1 改變當量比之影響 37
4-1-3-2 改變氫氣進氣流率之影響 38
4-1-4 多孔性介質介面之徑向溫度分佈 39
4-1-4-1 改變當量比之影響 39
4-1-4-2 改變氫氣進氣流率之影響 40
4-2多孔性介質應用於逆水氣轉移之可行性探討 41
4-2-1 CO2轉化率再現性實驗 41
4-2-2 H2/CO2比之影響 42
4-2-3 氫氣進氣流率之影響 43
4-2-4 導入二氧化碳對燃燒室溫度分佈的影響 44
4-2-5 CO2、H2轉化率與溫度之關係 45
4-2-6 整體進氣流率之影響 47
第五章 結論 49
第六章 未來工作 51
參考文獻 52

[1] “Climate Change 2007: Synthesis Report, Intergovernmental Panel On Climate Change, 2007.
[2] Nejat, V. T., “Quarter Century of Hydrogen Movement 1974-2000,International Journal of Hydrogen Energy, Volume25, pp.1143-1150, 2000.
[3] 方良吉, “2010年能源產業技術白皮書,經濟部能源局,財團法人中衛發展中心編輯,台灣,2010年。
[4] 湯慰祖,“氫氣經濟時代瓦斯業未來之商機,大台北瓦斯能源開發部,台灣,2003。
[5] Mujeebu M.A., Abdullah, M.Z., Abu Bakar, M.Z., Mohamad, A.A., Abdullah, M.K., “Applications of Porous Media Combustion Technology - A Review, Applied Energy, Volume 86, Issue 9, pp.1365-1375, 2009.
[6] Barnard, J.A., Bradley J.N., “Flame and Combustion, Second Edition, Chapman and Hall, New York, 1985.
[7] Heywood, J. B., “Internal Combustion Engine Fundamentals, McGraw Hill, Nueva York, 1989.
[8] Drell, I. L., Belles, F.E., “Survey of Hydrogen Combustion Properties, NACA Research Memorandum Report, 1383, 1957.
[9] Sørensen B. “Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier Academic, Amsterdam, Holland, 2005.
[10] Shudo, T., Omori, K., Hiyama, O., “NOX Reduction and NO2 Emission Characteristics in Rich-Lean Combustion of Hydrogen, International Journal of Hydrogen Energy, Volume 33, Issue 17, pp.4689-4693, 2008.
[11] Ilbas, M., Crayford, A.P., Yilmaz, I, Bowen, P.J., Syred, N., “Laminar-buming Velocities of Hydrogen-air and Hydrogen-Methane-Air Mixtures: An Experimental Study, International Journal of Hydrogen Energy, Volume 31, Issue 12, pp.1768-1779, 2006.
[12] Toro, V.V., Mokhov, A.V., Levinsky, H.B, Smooke, M.D., “Combined Experimental and Computational Study of Laminar, Axisymmetric Hydrogen-Air Diffusion Flames. Proceedings of the Combustion Institute, Volume 30, pp.485-492, 2005.
[13] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis, D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P., Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., Jansen, F., “Drying & Firing: Innovative Ceramic Materials for Porous-Medium Burners, II Interceram, Volume 48, pp.424-434, 1999.
[14] Wood, S., Harris, A.T., “Porous Burners for Lean-Burn Applications, Energy and Combustion Science, Volume 34, Issue 5, pp.667-684, 2008.
[15] Amanda J. B., Janet, L.E., “Heat Recirculation and Heat Transfer in Porous Burners, Combustion and Flame, Volume 137, pp.230-241, 2004
[16] Tadao Takeno, Kenji Sato, “An Excess Enthalpy Flame Theory, Combustion Science and Technology, Volume 20, Issue 1&2, pp.73-84, 1979.
[17] Diamantis, D., Mastorakos, E., Goussis, D., “Simulations of Premixed Combustion in Porous Media, Combustion Theory and Modelling, Volume 6, Issue 3, pp.383-411, 2002.
[18] Marbach, T. L., Agrawal, A.K., “Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media, Journal of Engineering for Gas Turbines and Power, Volume 127, pp.307-313, 2005
[19] Alavandi, S. K., Agrawal, A.K., “Experimental Study of Combustion of Hydrogen-Syngas/Methane Fuel Mixtures in a Porous Burner, International Journal of Hydrogen Energy, Volume 33, Issue 4, pp.1407-1415, 2008.
[20] Pavel, B.I., Mohamad, A.A., “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted with Porous Media, International Journal of Heat and Mass Transfer, Volume 47, Issue 23, pp.4939-4952, 2004.
[21] 欒晏昌,“氫氣在多孔性介質燃燒室之燃燒特性研究,國立成功大學航空太空工程學系碩士論文,2009。
[22] 陳瑞驄,“多孔性介質輔助二氧化碳甲烷重組研究,國立成功大學航空太空工程學系碩士論文,2010。
[23] 黃紀維,“氫於多孔性介質燃燒室應用在觸媒煆燒之研究, 國立成功大學航空太空工程學系碩士論文,2011。
[24] Soberanis, M.A., Fernandez, A.M., “A Review on The Technical Adaptations for Internal Combustion Engines to Operate with Gas/Hydrogen Mixtures, International Journal of Hydrogen Energy, Volume 35, Issue 21, pp.12134-12140, 2010.
[25] White, C.M., Steeper, R.R., “The Hydrogen-Fueled Internal Combustion Engine: a Technical Review, International Journal of Hydrogen Energy, Volume 31, Issue 10, pp.1292-1305, 2006.
[26] Afsharvahid, S., Ashman, P.J., “Investigation of NOx Conversion Characteristics in a Porous Medium, Combustion and Flame, Volume 152, pp.604–615, 2008.
[27] Al-Hamamrea, Z., Voß, S., Trimis, D., “Hydrogen Production by Thermal Partial Oxidation of Hydrocarbon Fuels in Porous Media Based Reformer, International Journal of Hydrogen Energy, Volume 34, pp.827–832, 2009.
[28] Pedersen-Mjaanes, H., Chan, L., Mastorakos, E., “Hydrogen Production from Rich Combustion in Porous Media, International Journal of Hydrogen Energy, Volume 30, pp.579–592, 2005.
[29] Bradean, R., Ingham, D.B., “The Unsteady Penetration of Free Convection Flows Caused by Heating and Cooling Flat Surfaces in Porous Media, International Journal Heat Mass Transfer, Volume 40, pp.665–687, 1997.
[30] Tseng, C. J., “Effect of Hydrogen Addition on Methane Combustion in a Porous Medium Burner, International Journal of Hydrogen Energy, Volume 27, Issue 6, pp.699-707, 2002.
[31] 張宏禾,“觸媒對多孔性介質爐之預混燃燒現象之影響,國立中央大學機械工程學系碩士論文,2003。
[32] 劉嘉峰,“多孔性燃燒加熱爐燃燒現象研究,國立中正大學機械工程研究所博士論文,2005。
[33] 李家欣,“多孔性陶瓷介質燃燒爐結構對燃燒現象之影響,國立中央大學機械工程學系碩士論文,2000。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊