跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖晨佑
研究生(外文):Chen-YuLiao
論文名稱:微渦輪引擎燃油啟動霧化器之設計與研究
論文名稱(外文):Study on Starting Fuel Atomizer Design of Micro Gas Turbine Engine
指導教授:賴維祥賴維祥引用關係
指導教授(外文):Wei-Hsiang Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:渦輪引擎燃油啟動霧化器渦旋腔直徑渦旋腔進入口寬度
外文關鍵詞:Gas TurbineAtomizerSwirl Chamber DiametersInlet Orifices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對微型渦輪引擎所使用之壓力式渦旋霧化器,進行不同參數設計,在釋流孔片設計中固定釋流孔孔徑(d0)大小為0.15 mm,同時維持相同l0/d0、LP/DP與LS值下,藉由改變渦漩腔進入孔口(DP)大小、渦漩腔直徑(DS)以及液體噴射壓力,來對壓力式渦旋霧化器之各項噴霧性能,如流量、流數、噴霧錐角與平均粒徑(SMD)等進行探討。
對於霧化器之噴霧錐角而言,於實驗結果中發現,當渦旋腔直徑(Ds)在較小值時,霧化器會有較大之霧化錐角,在此時改變渦旋腔進入口寬度(DP),能對霧化器之霧化錐角產生較明顯的影響,其影響趨勢為當渦旋腔進入口寬度(DP)逐漸縮小,霧化器噴霧錐角相對就提高,實驗中所得最佳霧化錐角設計參數為Ds =1.5 mm搭配DP =0.2 mm所得之79°。
另外吾人藉由Insitec雷射繞境分析儀,來對霧化器之平均粒徑進行分析所得結果中發現,從粒徑分佈圖中,發現當設計參數為Ds=1.5mm搭配DP=0.2mm,此時於各壓力下之粒徑分佈接為可接受範圍,比參考噴嘴之粒徑分佈略優,另外不同渦旋腔進入口寬度(DP)對於平均粒徑(SMD)較有影響,從實驗結果中可發現當渦旋腔進入口寬度(DP)較小時,平均粒徑SMD也明顯較小。

An experimental investigation was conducted to study the starting fuel atomizer design and to measure its spray characteristics of swirl chamber diameters (DS) and inlet orifices (DP). With the same orifice diameter (d0), l0/d0, LP/DP and LS, the different swirl chamber diameters (DS) and inlet orifices (DP) were used to investigate the fuel starting atomizer.
According to the experimental results, the swirl chamber diameters (DS) and inlet orifices (DP) did not play an important role in the volume flow rate under condition of the fixed discharge orifice diameter (d0) and liquid jet pressure. The difference between swirl chamber diameter (DS) and inlet orifice (DP) could lead the spray angle to change. Here, an increase in the spray angle is found with decreasing swirl chamber diameter (DS). Conversely, the spray angle decreased if the swirl chamber diameter (DS) was increasing. It is also interesting to note that the atomizer spray angle increased with decreasing inlet orifice (DP) and decreased with increasing inlet orifice (DP). In contrast with the increasing inlet orifice, the decreasing inlet orifice had a greater influence on the spray angle.

目錄 I
表目錄 III
圖目錄 IV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1霧化原理 2
1-2-2 霧化機制 3
1-2-3壓力式霧化器特性 9
1-2-4霧化器幾何尺寸與噴霧特性之研究 19
1-2-5 霧化器尺寸設計限制 20
1-3 研究動機與目的 21
第二章 實驗設備及儀器 22
2-1實驗設備 22
2-2 實驗量測儀器 24
2-2-1 RT-Sizer粒徑分析儀 24
2-2-2 攝影器材與影像處理系統 27
2-2-3 航空燃油 27
2-3實驗研究相關參數 28
第三章 實驗步驟及方法 31
3-1 實驗量測條件 31
3-2流量的量測 32
3-3流數的計算 32
3-4噴霧型態的拍攝觀察與噴霧錐角之量測 33
3-5Insitec雷射繞射粒徑分析儀的量測 33
3-6更換釋流孔片 34
3-7數據取樣與分析 40
第四章 結果與討論 41
4-1 霧化器之壓力─流量特性曲線、壓力─流數之關係 41
4-1-1 壓力─流量特性曲線 41
4-1-2 壓力─流數之關係 46
4-2 霧化器之噴霧型態與噴霧錐角 50
4-2-1 相同(Ds),不同 (Dp)之噴霧錐角比較 50
4-2-2 相同(Dp),不同(Ds)之噴霧錐角比較 64
4-3 霧化器之平均粒徑(SMD)與粒徑分佈 67
4-3-1相同(Ds),不同 (Dp)之平均粒徑(SMD)與粒徑分佈比較 67
4-3-2相同(Dp),不同(Ds)之平均粒徑比較 91
第五章 結論 94
第六章 未來工作 95
參考文獻 96
自述 99

[1] Lefebvre, A. H., Gas Turbine Combustion, Hemisphere Publishing Corporation, New York, 2nd Edition, 1983.
[2] Lefebvre, A. H., Atomization and Sprays, Hemisphere Publishing Corporation,4th Edition, New York, 1989.
[3] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids, Bureau of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[4] Dowbrowski, N. and Fraser, R. P., Trans. Royal Society London, Series A, Vol. 247, pp.101-105 , 1945.
[5] Dowbowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets, Chemical Engineering Science., Vol. 18, pp.203-214, 1963.
[6] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effect of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet, ASME, Journal of Engineering for Gas Turbine and Power, Vol.114, pp.39-45, 1992.
[7] Fraser, R. P., “Liquid Fuel Atomization, 6th Symposium(International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
[8] C.H. Lee, Rolf D. Reitz, “An Experimental Study of the effect of Gas density on the Distortion and breakup Mechanism of drops in high speed Gas stream, International Journal of Multiphase Flow , Vol. 26, pp.229-244, 2000
[9] Crapper, G. D., Dombrowski, N., Jepson, W. P. and Pyott, G. A. D., “A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets, Journal of Fluid Mech., Vol. 57, part 4, pp.671-672, 1972.
[10] Simmons, H. C., “The Atomization of Liquid, Principles and Methods, Parker Hannifin Report , No. 8, pp.61-92, 1982.
[11] Kutty, P. S., Narasimhan, M. V., and Narayanaswamy, K., “Design and prediction of Discharge Rate, Cone Angle and Air Core Diameter of Swirl Chamber Atomizers, Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp.93-100, 1984.
[12] Rizk, N. K., and Lefebvre, A. H., “Internal Flow Characteristics of Simplex Swirl Atomizers, AIAA Journal, pp.84-124, 1984.
[13] Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., “Correlations for Prediction of Discharge Rate, Cone Angle and Air Core Diameter of Swirl Spray Atomizers, Proceedings of 2nd International Conference on Liquid Atomization and Spray System, pp.91-97, 1982.
[14] Suyari, M. and Lefebvre, A. H., “Film Thickness Measurements in a Simplex Swirl Atomizer, Journal of Propulsion and Power, Vol. 2, No. 6, pp.528-533, 1986.
[15] Ortman, J. and Lefebvre, A.H., “Fuel Distributions from Pressure-Swirl Atomizers, Journal of Propulsion and Power, Vol. 1, No. 1, pp.11-15, 1985.
[16] De Corso, S. M., and Kemeny, G. A., “Effect of Ambient and Fuel Pressure on Nozzle Spray Angle, ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp. 607-615, 1957.
[17] Dumouchel, C., Bloor, M. I. G., Dombrowski, N., Ingham, D. B., and Ledoux, M., “Viscous Flow in a Swirl Atomizer, Chemical Engineering Science, Vol. 48, No. 1, pp.81-87, 1993.
[18] Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., “Prediction of Mean Drop Size of Fuel Sprays From Swirl Spray Atomizer, Proceedings of 2nd International Conference on Liquid Atomization and Spray System, pp.99-106, 1982.
[19] Simmons, H. C., and Harding, C. F., “Some Effect on Using Water as a Test Fluid in Fuel Nozzle Spray Analysis, American Society of Mechanical Engineers , pp.80-90, 1980.
[20] Simmons, H. C., “The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzle of Different Types, American Society of Mechanical Engineers, Vol. 102, pp.646-652, 1980.
[21] Kennedy, J. B., “High Weber Number SMD Correlations for Pressure Atomizers, American Society of Mechanical Engineers, Vol. 108, pp.191-195, 1986.
[22] Wang, X. F., and Lefebvre, A. H., “Mean Drop Sizes from Pressure-Swirl Nozzles, Journal of Propulsion and Power, Vol. 3, No. 1, pp.11-18, 1987.
[23] De Corso, S. M., “Effect of Ambient and Fuel Pressure on Spray Drop Size, American Society of Mechanical Engineers, Vol. 82, pp.10, 1960.
[24] Taylor, G. I., “The Boundary Layer in the Converging Nozzle of a Swirl Atomizer, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 3, pp.129-139, 1948
[25] Rizk, N. K., and Lefebvre, A. H., “Prediction of Velocity Coefficient and Spray Cone Angle for Simplex Swirl Atomizer, Proceeding of 3rd International Conference on Liquid Atomization and Spray System, pp.III/2/1-16, 1985.
[26] Elkotb, M. M., Rafat, N. M., and Hanna, M. A., “The Influence of Swirl Atomizer Geometry on the Atomization Performance, Proceedings of 1st International Conference on Liquid Atomization and Spray System, pp.109-115, 1978.
[27] Abou-Ellail, M. M. M., Elkotb, M. M., Rafat, N. M., “Effect of Fuel Pressure, Air Pressure and Air Temperature on Droplet Size Distribution in Hollow-Cone kerosene Sprays, Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp.85-92, 1978.
[28] Chen, S. K., Lefebvre, A. H., and Rollbuhler, J., “Factors Influencing the Effective Spray Cone Angle of Pressure Swirl Atomizers, ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp.97-103, 1992.
[29] Zhang, F. R., Terashima, H., and Tokuoka, N., “The Spray Structure from Swirl Atomizer (2nd Report, Correlation between Characteristics of Swirl Atomizers and Structure of Spray),B Hen/Transactions of Japan Society of Mechanical Engineers, Part B, Vol. 60, pp.681-686, 1994.
[30] Lacava, P. T. Demétrio Bastos-Netto, Amílcar Porto Pimenta, “Design Procedure and Experimental Evaluation of Pressure-Swirl Atomizers, 24th International Congress of the Aeronautical Sciences, 2004.
[31] 林富祈, “壓力式渦漩霧化器噴霧錐角控制之研究, 國立成功大學航太所碩士論文, 1997.
[32] 郭志霄, “單孔渦漩霧化器之設計, 國立成功大學機械工程所碩士論文, 1994.
[33] 林嘉宏, “渦漩霧化器之設計製造及模擬分析, 國立成功大學航太所碩士論文, 1996.
[34] 黃澤民, “直接噴油啟動之微型渦輪引擎啟動, 國立成功大學航太所碩士論文, 2010.
[35] 陳正業, “壓力式渦旋霧化器粒徑分佈集中化技術研究, 國立成功大學航太所碩士論文, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top