跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃煜程
研究生(外文):Yu-ChengHuang
論文名稱:結構系統模態干涉指標之研究
論文名稱(外文):A Study on the Index of Modal Interference in Structural Systems
指導教授:江達雲
指導教授(外文):Dar-Yun Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:模態干涉頻率響應函數
外文關鍵詞:modal interferencefrequency response function
相關次數:
  • 被引用被引用:2
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在模態分析中,吾人常會遇到系統有模態干涉現象,且模態干涉常會造成可識別性的問題,進而影響系統識別的精度。產生模態干涉的主要原因通常有相近頻率、高阻尼比、及阻尼非比例性過大等等,其各因素對模態干涉的影響程度也有所不同。本文主要探討如何定義出有效的描述系統中模態干涉程度的量化指標,以了解造成模態干涉的幾項因素個別對模態干涉的影響程度,以及該因素所造成的模態干涉對識別參數的影響性。再以數值模擬的方式,比較各個指標之間的優劣,驗證本文所提出的指標之可行性。
In modal analysis, the results of identification may be poor due to modal interference, which might even introduce the problem of identifiability. The causes of modal interference may include closely spaced modal frequencies, high damping ratios, and large damping non-proportionality, the influences of modal interference to each cause are difference. This thesis studies how to define appropriate indices to quantify the modal interference, in order to clarify the influences of
modal interference to each cause causing modal interference. And the results of identification may be poor due to each cause. Then the applicability of the proposed indices is demonstrated by numerical simulations. The examples also show the performance of the proposed indices and comparison with each other.
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
表目錄…………………………………………………………………Ⅵ
圖目錄…………………………………………………………………Ⅶ
第一章 緒論…………………………………………………………… 1
1-1 引言…………………………………………………………… 1
1-2 模態分析與系統識別………………………………………… 3
1-3 文獻回顧……………………………………………………… 6
1-4 研究動機與目的……………………………………………… 8
第二章 頻率響應函數…………………………………………………10
2-1 引言……………………………………………………………10
2-2 比例阻尼系統的頻率響應函數………………………………11
2-3 非比例阻尼系統的頻率響應函數……………………………14
第三章 模態干涉指標…………………………………………………22
3-1 引言……………………………………………………………22
3-2 模態干涉………………………………………………………22
3-3 奈氏圓理論……………………………………………………24
3-4 模態干涉指標…………………………………………………26
第四章 時域法模態參數識別理論……………………………………33
4-1 引言……………………………………………………………33
4-2 Ibrahim 時域法………………………………………………34
第五章 數值模擬………………………………………………………42
5-1 引言……………………………………………………………42
5-2 阻尼比於模態干涉影響程度之模擬…………………………42
5-3 相近頻率於模態干涉影響程度之模擬………………………44
5-4 阻尼非比例性於模態干涉影響程度之模擬…………………46
第六章 結論……………………………………………………………49
參考文獻.………………………………………………………………52
[1] Adhikari, S., “Calculation of derivative of complex modes using classical normal modes, Computers and Structures, Volume 77, Issue 6, 15 August 2000, Pages 625-633
[2] Adhikari, S., “Optimal complex modes and an index of damping non-proportionality ,Mechanical Systems and Signal Processing, Volume 18, Issue 1, January 2004, Pages 1-27
[3] Balmes, E., “New results on the identification of normal mode from experimental complex mode, Mechanical System and Signal Processing, Volume 11, Issue 2,1997, Pages 229-243
[4] Caughey, T. K.and Okely, M. E., “Classical normal modes in damped linear dynamic system, Journal of Applied Mechanics, Volume 32, 1965, Pages 583-588
[5] Clough, C. W.and Penzien, J., “Dynamic of structure Second edition. McGram-Hill. Inc,1993
[6] Ewins, D. J., “Modal Testing:Theory and Practice,Research Studies Press, 1984
[7] Foss, K.A., “Coordinates which uncouple the equations of motion of damped linear dynamic systems, Transaction of ASME, Journal of Applied Mechanics , Volume 25, 1958, Pages 361-364
[8] Ibrahim, S. R., “Computation of normal modes from identified complex modes , AIAA Journal, Volume 21, No.3,1983,Pages 446-451
[9] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response, Shock and Vibration Bulletin, Volume 47, Part 4, September 1977,Pages 183-198
[10] Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses, Shock and Vibration Bulletin, Volume 46, Part 5, August 1976,Pages 183-198
[11] Ibrahim, S. R. and Pappa, R. S., “Large Survey Testing Using the Ibrahim Time Domain (ITD) Model Identification Algorithm, Journal of Spacecraft and
Rockets, Volume 19, Sept.-Oct. 1982 ,Pages 459-465
[12] Karavasilis, T. L. and Seo, C. Y. “Seismic structural and non-structural performance evaluation of highly damped self-centering and conventional systems, Engineering Structures, Volume 33, 2011, Pages 2248-2258
[13] Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration Measurement and Analysis, Journal of Aeronautics Sciences, Volume 14, No.11, 1974, Pages 603-625.
[14] Kirshenboim, J., “Real vs. complex mode shapes, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, Pages 1594-1599
[15] Liang, Z., Lee , G. C. and Tong, M. “On a theory of complex damping, Proceedings of damping 91, San Diego, USA 1995, Pages 1-19
[16] Liang, Z., Tong, M. and Lee , G. C. “Complex Modes in Damped Linear Dynamic Systems, International Journal of Analytical and Experimental Modal Analysis, Volume 7, No.1, 1992, Pages 1-20
[17] Lin, R. M. and Lin, M. K. “Modal analysis of close modes using perturbative sensitivity approach, Engineering Structures, Volume 19, No.6, 1997, pages 397-406
[18] Rayleigh, Lord,. “The Theory of Sound, Vols. 1, 2, 2nd ed. NewYork: Dover Publications, 1897 (re-issue 1945).
[19] Sestieri, A. and Ibrahim, R., “Analysis of errors and approximations in the use of modal coordinates, Journal of Sound and Vibration, Volume 177, 1994, Pages 145–157
[20] Srikantha Phani, A., “On the necessary and sufficient conditions for the existence of classical normal modes in damped liner dynamic systems, Journal of Sound and Vibration, Volume 264, 2003,Pages 741-745
[21] Ward Heylen, Stefan Lammens and Paul Sas, “Modal Analysis Theory and Testing, 2nd ed., Katholieke Universiteit Leuven, Faculty of Engineering, Dept. of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, 1998
[22] Wei., M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization of measured complex modes, Proceedings of 5th International Modal Analysis Conference,London, England 1987, Pages 708-712
[23] Wheeler,W. K. and Hancock,G. J. “Dynamic response of discretely damped structures under harmonic and random excitation, Engineering Structures,Volume 7, Issue 4, October 1985, Pages 237-244
[24] 陳奕伸, “結構系統非比例阻尼指標之研究,碩士論文,國立成功大學航空太空工程研究,2011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top