跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯于正
研究生(外文):Yu-ChengTang
論文名稱:二維向量噴嘴之動態模擬分析
論文名稱(外文):The Dynamic Simulation and Analysis of Two-Dimensional Thrust-Vectoring Nozzle
指導教授:江滄柳
指導教授(外文):Tsung-Leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:二維噴嘴效能分析動態模擬
外文關鍵詞:Two-dimensional Thrust NozzleDynamic SimulationEfficiency Evaluation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用數值模擬之方式,模擬二維向量噴嘴之動態內流場,做為二維向量噴嘴之效能評估。本研究之數值模擬使用Fluent軟體並採用SST k-ω紊流模式,並藉由文獻實驗結果驗證本數值模擬之準確性,比對結果顯示模擬值和實驗結果十分接近。本研究之目的在於模擬噴嘴出口導流板擺動過程之流場變化,並探討動態與穩態之推力與導流板受力之差異。由研究結果發現,動態之導流板出口平均速度較穩態小,所以動態操作時所得之推力較低。在上下平板往上擺動至30度時,二維暫態模擬與三維穩態模擬相比,下平板受力約減少27%,上平板受力則約減少14%。三維暫態模擬與三維穩態模擬相比,下平板受力約減少15%,上平板受力約減少9%。在左右平板向右擺動至15度時,三維暫態模擬與三維穩態模擬相比,右平板受力約減少23%,左平板受力約減少2%。推力效率方面從平板擺動前為83.41%,上下平板往上擺動至30度時降至74.75%;而左右平板往右擺動至15度時則降至82.44%。
The performance of a two-dimensional thrust-vectoring nozzle has been evaluated by the numerical simulation of its internal flow in the present study. The FLUENT software has been used in the numerical simulation, adopting the SST k-ω turbulent model. The numerical simulation has been validated by the available experimental results. The objective of the present study is to simulate the nozzle flow variation during the flapping process, and investigate the differences of the thrust and flap’s stress between the dynamic and steady-state operations. It has been found that the exhaust average velocity of the dynamic operation is lower than that of the steady-state one, reducing its thrust. When the pitch-flap swings up to 30 degrees, the dynamic stress of the upper flap reduces approximately by 27% and that of the nether flap decrease approximately by 14% in comparison to that of the steady-state operation by simplified two-dimensional simulation. However, for a complete three-dimensional analysis, the dynamic stress of the upper flap decreases approximately by 15%, and that of the nether flap decreases approximately by 9% in comparison to that of the steady-state operation. When the yaw-flap swings right to 15 degrees, the dynamic stress of the right flap decreases approximately by 23%, and that of the left flap decreases approximately by 2% in comparison to that of the steady-state operation. The present results show that the complete three-dimensional dynamic simulation is in better agreement with the actual situation than the steady simulation. The thrust efficiency is 83.41% before the flap swings. The thrust efficiency is down to 74.75%, when the pitch-flap swings up to 30 degrees. The thrust efficiency is down to 82.44% when the yaw-flap swings right to 15 degrees.
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 XV
第一章 導論 - 1 -
§1-1 前言 - 1 -
§1-2 文獻回顧 - 4 -
§1-3 研究動機及目的 - 12 -
第二章 數學與物理模型 - 13 -
§2-1 噴嘴特性 - 13 -
§2-2 基本假設 - 14 -
§2-3 氣相流場統御方程式 - 15 -
§2-4 紊流模式 - 17 -
§2-5 邊牆函數模式(Wall Function) - 19 -
第三章 數值方法 - 21 -
§3-1 控制體積轉換之傳輸方程式 - 22 -
§3-2 Pressure-Based之SIMPLE運算法則 - 22 -
§3-3 鬆弛係數 - 23 -
§3-4 收斂標準 - 24 -
§3-5 動態網格模擬原理 - 24 -
§3-5-1動態網格守恆方程式 - 24 -
§3-5-2 動態網格更新方法 - 25 -
第四章 結果與討論 - 30 -
§4-1 CASE A與鄭兆均【10】比較之結果 - 32 -
§4-2 CASE B與Asbury等人【12】比較之結果 - 34 -
§4-3 三維穩態計算流場網格獨立測試 - 35 -
§4-4 CASE C 之向量噴嘴設計 - 36 -
§4-5 三維穩態噴嘴內流場分析 - 36 -
§4-6 CASE C之二維暫態噴嘴內流場分析 - 38 -
§4-7 CASE C三維暫態噴嘴內流場分析 - 40 -
第五章結論與未來工作 - 44 -
附錄A-推力效率之定義 - 48 -
參考文獻 - 50 -
圖表 - 54 -
自述 - 97 -
著作權聲明 - 98 -
【1】C. W. Alcorn, M. A. Croom, M. S. Francis, and H. Ross, “The X-31 Aircraft: Advances in Aircraft Agility and Performance, Prog. Aerosp. Sci., Vol. 32, No. 4, pp. 377-413, 1996.
【2】王立杰, “俄製戰機超級機動性之探討, 空軍學術月刊, 第526期, Sep. 1990.
【3】E. A. Bare and D. E. Reubush, “Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with Thrust Vectoring, NASA TP-2721, July 1987.
【4】J.R. Burley, and J.R. Carlson, “Circular-to-Rectangular Ducts for High-Aspect Ratio Nonaxisymmetric Nozzle, AIAA-85-1346, July 1985.
【5】S.P. Pao, and J.R. Carlson, “Computational Investigation of Circular-to-Rectangular Transition Duct, Journal of Propulsion and Power, Vol. 10, No. 1, Jan.-Feb, 1994.
【6】A. Bailey, L. L. Price and J. G. Pipes, “Effect of Ambient Pressure on Nozzle Centerline Flow Properties, AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
【7】林柏枝, 賴維祥, 轉接段設計研究, 中山科學研究院第一研究所,計畫報告,中華民國七十三年.
【8】戴昌賢, 厲復霖, 苗志銘, 孫維新, 多維向量推力噴嘴動態性能之數值研究, 力學, 15, 13-23, 中華民園八十八年.
【9】N. Maarouf, M. Sellam1, M. Grignon1 and A. Chpoun. “Thrust Vectoring through Fluid Injection in an Axisymmetrical Supersonic Nozzle: Theoretical and Computational Study. Springer Berlin Heidelberg, 2009.
【10】鄭兆均, “二維向量化推力噴嘴之設計與流場分析, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十一年.
【11】王文弘, “三維加高展弦比轉接段向量推力系統之性能與流場分析, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十二年.
【12】S. C. Asbury, and Craig A. Hunter, “Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle Langley Research Center, Hampton, Virginia,1999
【13】F. J. Capone, “Static Performance of Five Twin-Engine Non-Axisymmetric Nozzles with Vectoring and Reversing Capability, AIAA TP-1224, May 1978.
【14】J. G. Taylor, “Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability, NASA TP-2973, Apr. 1990.
【15】E. A. Wilson, D. Adler, and P. Bar-Yoseph, “Thrust-Vectoring a Single Impinging Jet in a Crossflow, Int. J. Turbo Jet Eng., Vol. 17, No. 3, pp. 219-226, 2000.
【16】S. Hollmeier, S. Kopp, O. Herrmann, and H. Rick, “Propulsion/Aircraft Integration of Hypersonic Vehicles with Active Thrust-Vectoring and Real-Time of Dynamic Engine Behavior,“ Int. J. Turbo Jet Eng., Vol. 16, No. 4, pp. 207-221, 1999.
【17】R. J. Re and L. D. Leavitt, “Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles, NASA TP-2253, Feb.1984.
【18】A. J. Steer, “Low Speed Control of a Second Generation Supersonic Transport Aircraft Using Integrated Thrust Vectoring, Aeronaut. J., Vol. 104, No. 1035, pp. 237-245, May 2000.
【19】C. B. Sorensen, E. Mosekidle, and P. Granasy, “Nonlinear Dynamics of a Vectored Thrust Aircraft, Phys. Scr. T67, pp. 176-183, 1996.
【20】V. Sherbaum and M. Lichtsinder, “Jet Deflection Angles in Military, Civil and RPV Thrust Vectoring Aircraft, Int. J. Turbo Jet Eng., Vol. 15, No. 2, pp. 91-94, 1998.
【21】F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., Vol.32, No.8, Aug. 1994.
【22】T. H. Pulliam, “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D, Notes for Computational Fluid Dynamics User’s Workshop, The University of Tennessee Space Institute, Tullahoma, Tennessee, March 12-16, 1984
【23】J. D. Flamm, K. A. Deere ,M. L. Mason, B. L. Berrier, and S. K. Johnson, “Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application .AIAA 2007-5084, Hampton, VA, USA, 2007.
【24】D. J. Wing, L. D. Leavitt, and R. J. Re, “Internal Performance of a Nonaxisymmetric Nozzle with a Rotating Upper Flap and a Center-Pivoted Lower Flap, NASA TP-3385, Nov. 1993.
【25】K. Fujii, K. Imai, and T. Sato, “Computational Analysis of the Flow Field Near the Boat-tail Region of Annular Plug Nozzle, JSME International Journal, Series B, Vol. 45, No. 4, 2002.
【26】B. L. Berrier and R. J. Re, “A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft, AIAA paper 78-1023, July 1978.
【27】吳望一“流體力學, 狀元出版社, 1989
【28】FLUENT 6.3, User Guide, FLUENT Incorporated, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top