跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃耿彬
研究生(外文):Keng-PinHuang
論文名稱:陽極氣體條件對kW級氣冷式燃料電池堆特性影響之研究
論文名稱(外文):Effects of Anodic Gas Conditions on Characteristics of a kW-scale Air-cooling PEMFC Stack
指導教授:賴維祥賴維祥引用關係
指導教授(外文):Wei-Hsiang Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:137
中文關鍵詞:重組器質子交換膜燃料電池一氧化碳重組氣體稀釋氫氣Air-Bleeding
外文關鍵詞:ReformerProton exchange membrane fuel cellCarbon monoxideReformateDiluted hydrogenAir-bleeding
相關次數:
  • 被引用被引用:3
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池在目前是很具有潛力的綠色能源之一,而燃料電池的燃料在陽極部分是採用氫氣,陰極部分是採用空氣,而空氣極易取得,但由於氫氣較難運輸及儲存,因此,如何取得氫氣就是目前燃料電池系統研究中的主要課題之一。所以目前產氫部分皆以重組器為主要的方法,但由於重組器產生氣體的氫氣濃度較低且含有會毒化燃料電池的一氧化碳,會使得系統無法穩定得輸出電力。
本研究使用反應面積為112.85 cm2之自製千瓦級40級燃料電池堆,首先針對陰陽極計量比、電池溫度、增濕溫度等參數進行電池性能影響探討。當得到較佳之參數後,進行一氧化碳濃度與氫氣濃度對燃料電池性能之影響研究,並同時觀測電池堆陽極出口濃度之變化。由結果得知,燃料電池電壓隨時間之變化曲線隨著一氧化碳濃度的變化而有所差異,且燃料電池電壓下降的速率亦隨著氫氣濃度的變化而有所變化,另外,當含一氧化碳之混合氣體通入陽極端時,其電池溫度也會隨之變化。再者,因稀釋氫氣與一氧化碳造成之陽極過電位上升,使得一氧化碳電化學氧化率與吸附率呈現拉扯之現象,進而出現電池電壓震盪之現象。而在本研究中使用Air-Bleeding的方法來消除吸附在觸媒上的一氧化碳,而實驗結果顯示通入小量的空氣可以有效得消除吸附在觸媒上的一氧化碳,使衰退的電壓回升且讓功率能夠穩定輸出。

A fuel cell is one of the most promising green energy devices. Hydrogen is being used as the anodic fuel, and air is being used as the catholic oxidant in a fuel cell. While air can be obtained easily, hydrogen is much harder to produce, transport and store. Thus, hydrogen production becomes a main topic in the research of fuel cell systems. A reformer is commonly used to produce hydrogen. However, the reformate compresses a low concentration of hydrogen and a certain amount of carbon monoxide which deactivates the Pt catalyst, and therefore, using a reformer makes the power of the fuel cell system unable to be steady.
In the study, a self-made kw-class 40cell PEMFC stack with reaction area of 112.85 cm2 per cell was tested. First, effects of anode and cathode stoichiometric ratio, the fuel cell stack temperature and the dew point on the stack performance was carried out. After optimal operational parameters were obtained, effects of the carbon monoxide concentration and hydrogen concentration on stack performance were performed, and the change of the carbon monoxide concentration at the anode outlet was also monitored at the same time. As can be seen in the results, the curve of voltage change with time varied with the carbon monoxide concentration, and the descending rate of voltage varied with the hydrogen concentration. On the other hand, when the mixed gas which contains carbon monoxide was flowed into the fuel cell, the cell temperature changed, too. Moreover, diluted hydrogen and carbon monoxide increased the anodic overpotential, and therefore resulted in a rivaling phenomenon between the oxidation rate of carbon monoxide and the adsorption rate of carbon monoxide on the catalyst. Thus, the stack potential fluctuated. r. In the study, air-bleeding was used to remove carbon monoxide on the catalyst surface to recover the stack performance. The results showed that flowing a small amount of air can remove most carbon monoxide adsorbed on the catalyst, and it can make the stack performance recovered and make the stack power output stable.

目錄
中文摘要 III
Abstract V
誌 謝 VII
目錄 VIII
圖 目 錄 XI
表 目 錄 XIX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 5
1-3 文獻回顧 7
1-4 研究目標 14
第二章 燃料電池基礎理論 15
2-1質子交換膜燃料電池基本構造 15
2-2質子交換膜燃料電池發電原理 21
第三章 實驗設備 24
3-1燃料電池測試系統 26
3-1-1增濕系統 28
3-2氣體混合機 29
3-3 即時氣體分析儀 31
3-4 交流阻抗量測系統 37
3-5質子交換膜燃料電池堆 40
第四章 實驗理論與研究方法 42
4-1性能評估方法 42
4-1-1極化曲線 42
4-1-2 定電流放電 48
4-1-3 陽極過電位 49
4-2 觸媒表面化學現象及平衡 51
4-3 交流阻抗分析方法 56
4-4 實驗方法 62
4-5實驗步驟 66
第五章 結果與討論 67
5-1流量測試對燃料電池之影響 68
5-2露點溫度及電池溫度對燃料電池之阻抗影響 73
5-3 CO濃度與Air-Bleeding在純氫下對燃料電池之影響 87
5-4 CO濃度與Air-Bleeding在稀釋氫氣下對燃料電池之影響 95
5-4-1 CO濃度與Air-Bleeding在75 %氫氣下對燃料電池之影響 95
5-4-2 CO濃度與Air-Bleeding在50%氫氣下對燃料電池之影響 105
5-4-3 CO濃度與Air-Bleeding在25%氫氣下對燃料電池之影響 114
5-5 相同濃度的一氧化碳對不同濃度的稀釋氫氣之影響 123
第六章 結論 127
第七章 未來工作 130
參考文獻 131
1.陳振源, “未來的綠色能源─燃料電池, 科學發展月刊: 319期, pp. 62-65, 2005年7月.
2.黃鎮江, “燃料電池, 滄海書局, p.13, 2008年3月.
3.Marcelo S. Batista, Elisabete I. Santiago, Elisabete M. Assaf, Edson A. Ticianelli, “Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system Journal of Power Sources 145,pp.50–54,2005
4.Chao Pan, Ronghuan He, Qingfeng Li, Jens Oluf Jensen, Niels J. Bjerrum,Henrik Andersen Hjulmand, Anders Børsting Jensen, Integration of high temperature PEM fuel cells with a methanol reformer, Journal of Power Sources 145,pp.392–398,2005
5.M.S. Wilson, C. Derouin, J. Valerio, S. Gottesfeld, “Electrocatalysis Issues in Polymer Electrolyte Fuel Cells., Electrocatalysis Issues in Polymer Electrolyte Fuel Cells: pp. 1.1203-1.1208, 1993
6.G.A. Camara, E.A. Ticianelli, S. Mukerjee, S.J. Lee, J. McBreen, “The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 149(6): pp. A748-A753, 2002.
7.Grgur, B. N., Markovic, N. M., Ross, P. N., “The Electro-Oxidation of H2 and H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts, Journal of The Electrochemical Society, 146(5): pp. 1613-1619, 1999.
8.D.J. Ham, Y.K Kim, S.H. Han, J.S. Lee, “Pt/WC as an Anode Catalyst for PEMFC: Activity and CO Tolerance, Catalysis Today, 132: pp. 117–122, 2008.
9.C. He, H.R. Kunz, J.M. Fenton, “Electro-Oxidation of Hydrogen with Carbon Monoxide on Pt/Ru-Based Ternary Catalysts, Journal of The Electrochemical Society, 150(8): pp. A1017-A1024, 2003.
10.L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, “Investigation of the CO Tolerance Mechanism at Several Pt-Based Bimetallic Anode Electrocatalysts in a PEM Fuel Cell, Electrochimica Acta, 54: pp. 1992–1998, 2009.
11.S. Mukerjee, R.C. Urian, S.J. Lee, E.A. Ticianelli, J. McBreen, “Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in Pemfcs, Journal of The Electrochemical Society, 151: pp. A1094-A1103, 2004.
12.S.J. Lee, S. Mukerjee, E.A. Ticianelli, J. McBreen, “Electrocatalysis of CO Tolerance in Hydrogen Oxidation Reaction in Pem Fuel Cells, Electrochimica Acta, 44: pp. 3283-3293, 1999.
13.D.A. Stevens, J.M. Rouleau, R.E. Mar, R.T. Atanasoski, A.K. Schmoeckel, M.K.Debe, J.R. Dahn, “Enhanced CO-Tolerance of Pt–Ru–Mo Hydrogen Oxidation Catalysts, Journal of The Electrochemical Society, 154(12): pp. B1211-B1219, 2007.
14.T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, “Enhanced CO-Tolerance of Carbon-Supported Platinum and Molybdenum Oxide Anode Catalyst, Journal of The Electrochemical Society, 150: pp. A1225-A1230, 2003.
15.R.C. Urian, A.F. Gullá, S. Mukerjee, “Electrocatalysis of Reformate Tolerance in Proton Exchange Membranes Fuel Cells: Part I, Journal of Electroanalytical Chemistry, 554-555: pp. 307-324, 2003.
16.Y. Kawasoe, S. Tanaka, T. Kuroki, H. Kusaba, K. Ito, Y. Teraoka, K. Sasaki, “Preparation and Electrochemical Activities of Pt–Ti Alloy Pefc Electrocatalysts, Journal of The Electrochemical Society, 154: pp. B969-B975, 2007.
17.H. Zhang, Y. Wang, E.R. Fachini, C.R. Cabrera, “Electrochemically Codeposited Platinum/Molybdenum Oxide Electrode for Catalytic Oxidation of Methanol in Acid Solution, Electrochemical and Solid-State Letters, 2(9), 1999.
18.Z. Qi, A. Kaufman, “CO Tolerance of Low Loaded Pt/Ru Anodes for Pem Fuel Cell, Journal of Power Sources, 113: pp. 115-123, 2003.
19.S.V. Ashton, “Platinum Metals Review, Johnson Matthey Public Limited Company, 46: pp. UK ISSN 0032-1400, 2002.
20.H. Lua, L. Rihko-Struckmanna, R. Hanke-Rauschenbach, K. Sundmacher, “Improved Electrochemical CO Removal Via Potential Oscillations in Serially Connected Pem Fuel Cells with Ptru Anodes, Electrochimica Acta, 54: pp. 1184–1191, 2009.
21.A.H. Thomason, T.R. Lalk, A.J. Appleby, “Effect of Current Pulsing and “Self-Oxidation on the CO Tolerance of a Pem Fuel Cell, Journal of Power Sources, 135: pp. 204–211, 2004.
22.A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, N. Rana, S. Grunow, T.C. Stoner, A.E. Kaloyeros, “Using Sputter Deposition to Increase CO Tolerance in a Proton-Exchange Membrane Fuel Cell, Journal of The Electrochemical Society, 149(7): pp. A868-A872, 2002.
23.P.A. Adcock, S.V. Pacheco, K.M. Norman, F.A. Uribe, “Transition Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved Co Tolerance: Polarization Data, Journal of The Electrochemical Society, 152(2): pp. A459-A466, 2005.
24.H.S. Chu, F. Tsau, Y.Y. Yan, K.L. Hsueh, F.L. Chen, “The Development of a Small PEMFC Combined Heat and Power System, Journal of Power Sources, 176: pp. 499–514, 2008.
25.C.C. Chung, C.H. Chen, D.Z. Weng, “Development of an Air Bleeding Technique and Specific Duration to Improve the CO Tolerance of Proton-Exchange Membrane Fuel Cells, Applied Thermal Engineering, 29: pp. 2518–2526, 2009.
26.B. Rohland, V. Plzak, “The PEMFC-Integrated CO Oxidation — a Novel Method of Simplifying the Fuel Cell Plant, Journal of Power Sources, 84: pp. 183–186, 1999.
27.W. Shi, M. Hou, Z. Shao, J. Hu, Z. Hou, P. Ming, B. Yi, “A Novel Proton Exchange Membrane Fuel Cell Anode for Enhancing CO Tolerance, Journal of Power Sources, 174: pp. 164–169, 2007.
28.F.A. Uribe, J.A. Valerio, F.H. Garzon, T.A. Zawodzinski, “PEMFC Reconfigured Anodes for Enhancing CO Tolerance with Air Bleed, Electrochemical and Solid-State Letters, 7(10): pp. A376-A379, 2004.
29.F. Sapountzi, M.N. Tsampas, C.G. Vayenas, “Electrocatalysis and Electrochemical Promotion of CO Oxidation in Pem Fuel Cells: The Role of Oxygen Crossover, Topics in Catalysis, 44(3): pp. 461-468, 2007.
30.W. Wang, “The Effect of Internal Air Bleed on CO Poisoning in a Proton Exchange Membrane Fuel Cell, Journal of Power Sources, 191: pp. 400–406, 2009.
31.J. Zhang, T. Thampan, R. Datta, “Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 149(6): pp. A765-A772, 2002 A.C. Garcia, V.A. Paganin, E.A. Ticianelli, “CO Tolerance of Pd/Pt/C and Pd/Pt/Ru/C Anodes for Pemfc, Electrochimica Acta, 53: pp. 4309–4315, 2008.
32.H.A. Gasteiger, N. Markovic, P.N. Ross, Jr., E.J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys, J. Phys. Chem., 98: pp. 617-625, 1994.
33.L. Giorgi, A. Pozio, C. Bracchini, R. Giorgi, S. Turtua, “H2 and H2/CO Oxidation Mechanism on Pt/C, Ru/C and Pt-Ru/C Electrocatalysts, Journal of Applied Electrochemistry, 31: pp. 325-334, 2001.
34.F.B. de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R.J. Behm, “CO Adsorption and Oxidation on Bimetallic Pt/Ru(0001) Surfaces– A Combined Stm and Tpd/Tpr Study, Surface Science, 411: pp. 249–262, 1998.
35.N. Wagner, M. Schulze, “Change of Electrochemical Impedance Spectra During CO Poisoning of the Pt and Pt /Ru Anodes in a Membrane Fuel Cell (PEFC), Electrochimica Acta, 48: pp. 3899-3907, 2003.
36.F. Maillard, G.Q. Lu, A. Wieckowski, U. Stimming, “Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation, J. Phys. Chem., 109: pp. 16230-16243, 2005.
37.acques Roziere, Deborah J. Jones, Non-Fluorinated Polymer materials for Proton Exchange Membrane Fuel Cells, Annual Review of Materials Research, 33, 503–555, 2003
38.Ciureanu M., Wang H., Qi Z., Electrochemical Impedance Study of Membrane-Electrode Assemblies in PEM Fuel Cells. II. Electro -oxidation of H2 and H2 /Co Mixtures on Pt/Ru-Based Gas-Diffusion Electrodes, Journal of Physical Chemistry, 103, 9645–9657, 1999.
39.Ballard Power System, Inc. http://www.ballard.com/
40.氣相層析儀簡介,http://www.ch.ntu.edu.tw/~chemedu3/Lecture/GC.htm.
41.EG&G Services Parsons, “Inc. Fuel Cell Handbook, 6th Edition, 2002.
42.T.E. Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed - Effects of CO, H2 Dilution, and High Fuel Utilization, Journal of The Electrochemical Society, 148(1): pp. A11-A23, 2001.
43.K.K. Bhatia, C.Y. Wang, “Transient Carbon Monoxide Poisoning of a Polymer Electrolyte Fuel Cell Operating on Diluted Hydrogen Feed, Electrochimica Acta, 49: pp. 2333–2341, 2004.
44.Jinfeng Wu, Xiao Zi Yuan, Haijiang Wang, Mauricio Blanco, Jonathan J. Martin, Jiujun Zhang, Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques, Journal of Hydrogen Energy, 33, 1735–1746, 2008.
45.A. K. Nigam, R. Balasubramaniam, S. Bhargava, R. G. Baligidad, Electrochemical impedance spectroscopy and cyclic voltammetry study of carbon-alloyed iron aluminides in sulfuric acid, Corrosion Science, 48, 1666–1678, 2006.
46.Barbir F., PEM fuel cells: theory and practice, New York: Elsevier/Academic Press, 23–25, 2005.
47.N. V. Dale, M. D. Mann, H. Salehfar, A. M. Dhirde T. Han, AC Impedance Study of a Proton Exchange Membrane Fuel Cell Stack Under Various Loading Conditions, Journal of Fuel Cell Science and Technology, 7, 31010–31020, 2010.
48.N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, B. Ould-Bouamama, Model based PEM fuel cell state-of-health monitoring via ac impedance measurements, Journal of Power Sources, 159, 905–913, 2006.
49.Zhiliang Wu, Yuanyuan Zhou, Guosong Lin, ShuxinWang, S. Jack Hu, An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells, Journal of Power Sources, 182, 265–269, 2008.
50.Abhishek Guha, Thomas A. Zawodzinski J., David A. Schiraldi, Influence of carbon support microstructure on the polarization behavior of a polymer electrolyte membrane fuel cell membrane electrode assemblies, Journal of Power Sources, 195, 5167–5175, 2010.
51.Matthew E. Lynch, Meilin Liu, Investigation of sheet resistance in thin-film mixed-conducting solid oxide fuel cell cathode test cells, Journal of Power Sources, 195, 5155–5166, 2010.
52.Nicolas Cunningham, Michel Lef`evre, Guy Lebrun, Jean-Pol Dodelet, Measuring the through-plane electrical resistivity of bipolar plates, Journal of Power Sources, 143, 93–102, 2005.
53.Nitta1, O. Himanen, M.Mikkola, Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell, American Society of Mechanical Engineers, 8, 111–119, 2008.
54.Y. Zhou, G. Lin, A. J. Shih, S. J. Hu, A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells, Journal of Power Sources, 163, 777–783, 2007.
55.Xiaozi Yuan, Jian Colin Suna, Mauricio Blanco, Haijiang Wang, Jiujun Zhang, David P. Wilkinson, AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance, Journal of Power Sources, 161, 920–928, 2006.
56.R. K. Ahluwalia, X. Wang, E. Doss, R. Kumar, 2005 USDOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review.
57.I. A. Schneider, H. Kuhn, A. Wokaun, G. G. Scherer, Fast Locally Resolved Electrochemical Impedance Spectroscopy in Polymer Electrolyte
58.Diard J. P., Le Gorrec B., Montella C., Poinsignon G., Vitter G., Impedance Measurement of Polymer Electrolyte Membrane Fuel Cell Running on Constant Load, Journal Power Sources, 74, 244–245, 1998.
59.Ciureanu M., Wang H., Qi Z., Electrochemical Impedance Study of Membrane-Electrode Assemblies in PEM Fuel Cells. II. Electro -oxidation of H2 and H2 /Co Mixtures on Pt/Ru-Based Gas-Diffusion Electrodes, Journal of Physical Chemistry, 103, 9645–9657, 1999.
60.Bin Du, Richard Pollard, John F , CO-Air Bleed Interaction and MEA Performance Degradation Study in PEM Fuel Cells ECS 210th Meeting
61.C.-C. Chung et al. Development of an air bleeding technique and specific duration to improve the CO tolerance of proton-exchange membrane fuel cells Applied Thermal Engineering 29 (2009) 2518–2526
62.A. Cutillo, S. Specchia , M. Antonini, G. Saracco, V. Specchia Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR) Journal of Power Sources 154 (2006) 379–385
63.J.C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 59 (1981) 720.
64.J.C. Amphlett, K.A.M. Creber, J.M. Davis, R.F. Mann, B.A.Peppley, D.M. Stokes, Int. J. Hydrogen Energy 19 (1994)131
65.W. Donitz, Int. J. Hydrogen Energy 23 (1998) 611.
66.Xiqiang Yan ∗, Shudong Wang, Xiangyi Li, Ming Hou, Zhongshan Yuan, Deyi Li, Liwei Pan, Cheng Zhang, Jingkai Liu, Pingwen Ming, Baolian Yi A 75-kW methanol reforming fuel cell system,  Journal of Power Sources 162 (2006) 1265–1269
67.Aidu Qi,Shudong Wang,Guizhi Fu,Diyong Wu, Autothermal reforming of n-octane on Ru-based catalysts, Applied Catalysis A: General 293 (2005) 71–82
68.L. Salemme, L. Menna, M. Simeone*, G. Volpicelli,Energy efficiency of membrane-based fuel processors–PEM fuel cell systems, journal of hydrogen energy 35 (2010)3712 – 3720
69.T. Smolinka, M. Heinen, Y.X. Chen, Z. ZJusys, W. Lehnert, R.J. Behm, “CO2 Reduction on Pt Electrocatalysts and Its Impact on H2 Oxidation in CO2 Containing Fuel Cell Feed Gas – a Combined in Situ Infrared Spectroscopy, Mass Spectrometry and Fuel Cell Erformance Study, Electrochimica Acta, 50: pp. 5189–5199, 2005
70.Wei-Mon Yan, Hsin-Sen Chu, Meng-Xi Lu, Fang-BorWeng, Guo-Bin Jung, Chi-Yuan Lee, Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning ,Journal of Power Sources 188 (2009) 141–147
71.鄭佑章一氧化碳與水分子在氧化釕(110)、鉑/氧化釕(110)表面吸附及反應之研究,2007,台灣科技大學碩士論文

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top