跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊淵
研究生(外文):Jun-YuanChen
論文名稱:碳氫燃料之超音速燃燒流場模擬分析
論文名稱(外文):Numerical Analyses of Supersonic Combustion Flows Using Hydrocarbon Fuels
指導教授:江滄柳
指導教授(外文):Tsung-leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:超音速燃燒數值模擬碳氫燃料
外文關鍵詞:ScramjetNumerical simulationHydrocarbon fuel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
超音速燃燒流場具有高溫及高速燃燒之特性,實驗量測相當困難,以數值模擬方法,分析其流場及燃燒特性,是值得研發之課題。目前在超音速燃燒衝壓引擎之研究,大多以氫氣作為燃料,使用碳氫燃料之超音速燃燒流場之研究則相對罕見。因此,本文針對使用氣態碳氫燃料之超音速燃燒流場建立一套計算模型,並針對法國航太實驗室(ONERA)所設計之LAERTE超燃衝壓引擎燃燒室進行模擬分析。本文使用計算流體力學軟體ANSYS FLUENT,針對RNG k-ε、Realizable k-ε及SST k-ω三種紊流模型之超音速流場模擬進行分析比對。由模擬結果發現,使用SST k-ω模型所得到之壓力分佈,與文獻之模擬結果相當符合,證實了SST k-ω紊流模型在超音速流場的適用性。在燃燒流場部分,則針對非預混火焰燃燒模型及層流有限速率燃燒模型兩種燃燒模型之模擬進行分析比對,並針對三種不同比例之氫氣-碳氫混合燃料進行模擬。在壁面壓力之預測,層流有限速率燃燒模型在壓力峰值及趨勢預測,與實驗值相當吻合,而非預混火焰燃燒模型之模擬結果,則低估了燃燒室後段之壓力。推測原因為非預混火焰燃燒模型,低估了紊流混合速率,導致其精準度不佳。因此,在超音速流場中,化學反應之效應較紊流之混合效應更為重要,層流有限速率燃燒模型,顯然是較為適合模擬超音速燃燒流場之燃燒模式。

It is of importance for the development of a numerical method for the supersonic combustion analyses of Scramjets, since they are characterized by the high-temperature and high-speed combustion which is very hard to measure. Presently, most of the studies for Scramjets are focused on those using hydrogen as the fuel, and only very few are for those using hydrocarbon fuels. Therefore, in this study, the numerical analyses for the supersonic turbulent combustion flow of Scramjets using gaseous hydrocarbon fuels are proposed. This study evaluated various turbulent-flow and turbulent-combustion models for their accuracy of prediction for the supersonic combustion flow using gaseous hydrocarbon fuels. Three turbulence models including RNG k-ε, Realizable k-ε, and SST k-ω have been adopted, respectively, for the simulation analysis of supersonic flows. Among the investigated turbulence models, the SST k-ω model has been shown to be in the best agreement with the experimental data in predicting the pressure distribution on the chamber wall. Two combustion models, including the non-premixed flamelet model and the laminar finite-rate reaction model, have been investigated for the analysis of a supersonic turbulent combustion flow using the mixed fuel of methane and hydrogen. The laminar finite-rate reaction model has been shown to be in good agreement with the experimental data in predicting the locations of peak pressure and the pressure distribution on the chamber wall. The pressure distribution in the downstream expansion region is, however, underestimated by the non-premixed flamelet combustion model. The turbulent mixing rate is apparently underestimated by the non-premixed flamelet combustion model, resulting in a lower turbulent burning rate. Therefore, in the supersonic flow, the effect of chemical reaction is more important than that of the turbulent mixing, and the laminar finite-rate reaction model is clearly more suitable for the simulation of a supersonic combustion flow.

摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xv
第一章 導論 1
§1-1 前言 1
§1-2 文獻回顧 2
§1-3 研究動機及目的 11
第二章 數學與物理模型 13
§2-1 基本假設 14
§2-2 氣相流場統御方程式 14
§2-3 紊流模型 18
§2-4 邊牆函數模型 22
§2-5 燃燒化學模型 23
第三章 數值方法 30
§3-1 控制體積轉換之傳輸方程式 30
§3-2 二階上風法 31
§3-3 壓力耦合求解器運算法則 31
§3-4 鬆弛因子 32
§3-5 收斂標準 32
第四章 結果與討論 34
§4-1 網格模型與邊界條件 34
§4-2 網格獨立測試 36
§4-3 不同紊流模型之冷流場壁面壓力預測結果 36
§4-4 使用SST k-ω紊流模型之冷流場模擬結果 37
§4-5 氫氣之超音速燃燒流場模擬分析(η=1) 39
§4-5-1 使用非預混火焰燃燒模型之模擬結果(η=1) 40
§4-5-2 使用層流有限速率燃燒模型之模擬結果(η=1) 41
§4-6 氫氣-甲烷混合燃料之模擬分析(η=0.51) 43
§4-6-1 使用非預混火焰燃燒模型之模擬結果(η=0.51) 44
§4-6-2 使用層流有限速率燃燒模型之模擬結果(η=0.51) 47
§4-7 氫氣-甲烷混合燃料之模擬分析(η=0.3) 49
§4-7-1 使用層流有限速率燃燒模型之模擬結果(η=0.3) 50
§4-8 不同比例之氫氣-甲烷混合燃料燃燒流場比較 51
§4-9 不同燃燒模型之模擬結果比較 52
第五章 結論與未來工作 55
參考文獻 58
圖表 64
自述 92

[1]http://en.wikipedia.org/wiki/Scramjet, 2012.
[2]S. Aso, S. Okuyama, M. Kawai, and Y. Ando, Experimental study on mixing phenomena in supersonic flows with slot injection, AIAA Paper, pp. 91-0016, 1991.
[3]D. P. Rizzetta, Numerical simulation of slot injection into a turbulent supersonic stream, AIAA Journal, vol. 30, pp. 2434-2439, 1992.
[4]C. F. Chenault and P. S. Beran, K-ε and Reynolds stress turbulence model comparisons for two-dimensional injection flows, AIAA Journal, vol. 36, pp. 1401-1412, 1998.
[5]F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, vol. 32, pp. 1598-1605, 1994.
[6]Y. Bartosiewicz, Z. Aidoun, P. Desevaux, and Y. Mercadier, Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, vol. 26, pp. 56-70, 2005.
[7]宋緯倫, 不同紊流模式對超音速流場數值模擬結果之影響, 成功大學航空太空工程學系碩士論文, 2010.
[8]U. Wepler and W. Koschel, Numerical investigation of turbulent reacting flows in a scramjet combustor model, AIAA Paper, vol. 3572, 2002.
[9]M. Oevermann, Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling, Aerospace Science and Technology, vol. 4, pp. 463-480, 2000.
[10]D. C. Alexander and J. P. Sislian, Computational study of the propulsive characteristics of a shcramjet engine, Journal of Propulsion and Power, vol. 24, pp. 34-44, 2008.
[11]A. Rajasekaran and V. Babu, Numerical simulation of three-dimensional reacting flow in a model supersonic combustor, Journal of Propulsion and Power, vol. 22, pp. 820-827, 2006.
[12]T. Mitani and T. Kouchi, Flame structures and combustion efficiency computed for a Mach 6 scramjet engine, Combustion and Flame, vol. 142, pp. 187-196, 2005.
[13]黃俊龍, 超音速燃燒流場之數值模擬分析, 成功大學航空太空工程學系碩士論文, 2010.
[14]M. K. Smart, N. E. Hass, and A. Paull, Flight data analysis of the HyShot 2 scramjet flight experiment, AIAA Journal, vol. 44, pp. 2366-2375, 2006.
[15]Z. Rana, B. Thornber, and D. Drikakis, Simulations of the HyShot-II (scramjet) model using high-resolution methods, AIAA Paper 2009, vol. 4844, 2009.
[16]廖偉傑, 紊流模式及三維效應對超音速燃燒流場模擬之影響, 成功大學航空太空工程學系碩士論文, 2011.
[17]S. Takahashi, K. Wakai, S. Tomioka, M. Tsue, and M. Kono, Effects of combustion on flowfield in a model scramjet combustor, in Symposium (International) on Combustion, 1998, pp. 2143-2150.
[18]K. Kumaran and V. Babu, Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen, Combustion and Flame, vol. 156, pp. 826-841, 2009.
[19]E. Dufour and M. Bouchez, Computational analysis of a kerosene-fuelled scramjet, AIAA Paper, vol. 1817, 2001.
[20]M. R. Tetlow and C. Doolan, Comparison of hydrogen and hydrocarbon-fueled scramjet engines for orbital insertion, Journal of Spacecraft and Rockets, vol. 44, pp. 365-373, 2007.
[21]V. Amati, C. Bruno, D. Simone, and E. Sciubba, Exergy analysis of hypersonic propulsion systems: Performance comparison of two different scramjet configurations at cruise conditions, Energy, vol. 33, pp. 116-129, 2008.
[22]C. C. Rasmussen, J. F. Driscoll, K. Y. Hsu, J. M. Donbar, M. R. Gruber, and C. D. Carter, Stability limits of cavity-stabilized flames in supersonic flow, Proceedings of the Combustion Institute, vol. 30, pp. 2825-2833, 2005.
[23]M. J. Lewis, Significance of fuel selection for hypersonic vehicle range, Journal of Propulsion and Power, vol. 17, pp. 1214-1221, 2001.
[24]P. Manna, R. Behera, and D. Chakraborty, Liquid-fueled strut-based scramjet combustor design: A computational fluid dynamics approach, Journal of Propulsion and Power, vol. 24, pp. 274-281, 2008.
[25]E. George, P. Magre, and V. Sabel’nikov, Numerical simulations of self-ignition of hydrogen-hydrocarbons mixtures in a hot supersonic air flow, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006.
[26]G. Yu, J. Li, X. Chang, L. Chen, and C. Sung, Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors, Journal of Propulsion and Power, vol. 17, pp. 1263-1272, 2001.
[27]M. Balasubramanyam, C. Chen, and H. Trinh, Evaporating spray in supersonic streams including turbulence effects, 44nd AIAA Aerospace Sciences Meeting and Exhibit, 2006.
[28]G. Yu, J. Li, J. Zhao, L. Yue, X. Chang, and C. J. Sung, An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization, Proceedings of the Combustion Institute, vol. 30, pp. 2859-2866, 2005.
[29]T. Mathur, K. Lin, P. Kennedy, M. Gruber, J. Donbar, T. Jackson, and F. Billig, Liquid JP-7 combustion in a scramjet combustor, AIAA Paper, vol. 3581, 2000.
[30]V. Quintilla, P. Magre, D. Scherrer, P. E. Destors, E. Dufour, and M. France, Experimental and numerical investigation of supersonic reacting hydrogen/methane jets in hot air co-flows, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy, pp. 1-16, 2005.
[31]D. M. Davidenko, I. Gökalp, E. Dufour, and D. Gaffié, Numerical simulations of supersonic combustion of methane-hydrogen fuel in an experimental combustion chamber, Parallel Computational Fluid Dynamics–Advanced Numerical Methods, Software and Applications, pp. 529-536, 2003.
[32]V. Sabel’nikov, C. Brossard, M. Orain, F. Grisch, M. Barat, A. Ristori, and P. Gicquel, Visualization study of thermo-acoustic instabilities in a backward-facing step stabilized lean-premixed flame in high turbulence flow, 10th International Conference on Fluid Control, Measurements, and Visualization, Moscow, Russia, 2009.
[33]D. Davidenko, I. Gökalp, E. Dufour, and P. Magre, Numerical Simulation of Supersonic Combustion with CH4-H2 Fuel, European Conference for Aerospace Sciences, Moscow, Russia, 2005.
[34]P. Magre and P. Bouchardy, Nitrogen and hydrogen coherent anti-stokes raman scattering thermometry in a supersonic reactive mixing layer, Proceedings of the Combustion Institute, vol. 28, pp. 697-703, 2000.
[35]E. George, V. Sabel’nikov, and P. Magre, Self-ignition of ethylene-hydrogen mixtures in unsteady thermal chocking conditions: numerical unsteady RANS investigations, West-East High Speed Flow Field Conference, Moscow, Russia, 2007.
[36]D. Davidenko, I. Gökalp, E. Dufour, and P. Magre, Ignition and combustion of hydrogen and methane in a model supersonic combustion chamber, in Proceedings of the European Combustion Meeting, 2005.
[37]FLUENT, 12.0 User’s Guide, ANSYS Inc, 2009.
[38]D. Choudhury, Introduction to the renormalization group method and turbulence modeling: FLUENT Incorporated, 1993.
[39]T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, A new k-ε eddy viscosity model for high reynolds number turbulent flows, Computers & Fluids, vol. 24, pp. 227-238, 1995.
[40]B. Launder and D. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
[41]K. Bray and N. Peters, Laminar flamelets in turbulent flames, Turbulent Reacting Flows, vol. Academic Press, pp. 63-113, 1994.
[42]T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, in AIAA 27th Aerospace Sciences Meeting, 1989.
[43]A. Chorin, Numerical solution of the navier-stokes equations, Mathematics of Computation, vol. 22, pp. 745-762, 1968.
[44]G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, and W. C. Gardiner Jr, GRI-Mech 3.0, URL: http://www.me.berkeley.edu/gri_mech, 1999.
[45]J. Manion, R. Huie, R. Levin, D. Burgess Jr, V. Orkin, W. Tsang, W. McGivern, J. Hudgens, V. Knyazev, and D. Atkinson, NIST chemical kinetics database, NIST standard reference database 17, version 7.0 (web version), release 1.6.5 data version 2012.02, URL: http://kinetics.nist.gov, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top