跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳利彥
研究生(外文):Li-YanChen
論文名稱:血管自動調適機制之仿生離體循環模擬
論文名稱(外文):In-vitro Simulation of Vessel Autoregulation on a Mock Circulation Loop
指導教授:陸鵬舉陸鵬舉引用關係
指導教授(外文):Pong-Jeu Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:腦血管自動調適仿生循環測試台PI控制器
外文關鍵詞:Cerebrovascular AutoregulationMock Circulation LoopPI Controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
血管自動調適機制為器官在灌流壓力的變化下保持其恆定的血流灌注的內在能力,其大多發生於大腦、心臟以及腎臟循環中。本研究旨在設計一套得以模擬血管自動調適機制的循環測試平台(Mock Circulation Loop)。吾人於現有之可傾式循環測試平台(Tilting-base Mock Circulation Loop)加入可變阻抗器搭配控制系統,以達成血管自動調適機制。測試台是依照混合循環模式(Hybrid Circulation Model)以一維管狀模型代表主要血管,其餘下游周邊血管阻抗與順容則以區塊參數法建構而成。腦循環中樞的威利氏環為本研究的自動調適機制實作對象,透過Ziegler-Nichols連續循環調整法建立PI控制參數與自動調適機制指標參數(Autoregulation Index, ARI)之關係,藉此控制遠端的氣動擠壓閥與線性步進馬達兩種可調變阻抗器,反應出相對應之血管調節變化與結果。此外,並以反脈動循環輔助來驗證具有血管自動調適機制之腦部灌流增益。研究結果顯示,1)藉由可變阻抗器的調整測試台可以模擬出人體腦部在5-10秒內動態的血管自動調適變化;2)腦循環可於60-150 mmHg之間的灌注壓力下達到血管自動調節的特性(約為0.75 LPM的灌流量);3)不論在1:1與1:3的輔助模式下,由於反脈動灌流增益特徵反應時間短,腦血管自動調適機制無法有效影響其功效;4)反脈動引起之腦循環局部偷血(逆流)現象,無法完全地由局部血管之終端阻抗調節獲得改善。因此在設計反脈動循環輔助器時卸載時間點要定於心臟收縮後,以避免過度的卸載。
Vessel autoregulation functions as the intrinsic ability of an organ to maintain the appropriate blood flow despite changes in perfusion pressure, most prominently found in brain, heart and kidney circulations. The aim of the present research is to design a mock circulation loop which can simulate blood flow with autoregulation mechanism included. To achieve vessel autoregulation, an existing tilting-base mock loop was modified by adding adjustable resistors equipped with specially designed control system. The design of this mock loop was guided by a hybrid circulation model concept, in which one-dimensional tubular casts were used to represent major arteries and the microcirculation downstream each tubular vessel were modeled by lumped resistance and compliance. In this study, the cerebral autoregulation was studied via controlling the adaptive resistor distal to the network of Circle of Willis. There are two types of adaptive resistors, a pneumatic pinch valve and a motor-controlled linear squeezer, that were constructed. Both adaptive resistors were actuated using proportional-integral (PI) controller implemented by Ziegler-Nichols algorithm. By varying the PI gain constants the cerebral autoregulation was realized in terms of different transient responses quantified by autoregulation indices. A particular subject of counterpulsation supported cerebral perfusion augmentation was also examined with autoregulation mechanism included. The results show that 1) the present mock loop can simulate dynamic human cerebral autoregulation within a 5-10 second transient by adjusting the designed cerebral resistor; 2) the cerebral autoregulation characteristic of maintaining a constant perfusion plateau between 60-150 mmHg (approximately 0.75 liter per minute) perfusion pressure gradient was achieved; 3) cerebral autoregelation cannot effectively override counterpulsation enforced by 1:1 and 1:3 modes because of the much faster transient characteristic of the counterpulsation support; and 4) local cerebral blood steal (reversed flow) phenomenon induced by counterpulsation cannot be completely remedied by local adaptation of terminal vessel resistance, indicating that the design of counterpulsation should avoid excessive contraction unloading and the deflation timing of pumping control should be delayed into heart systole.
中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XVI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-2-1 血管自動調適機制 4
1-2-2 傾斜式循環測試平台 5
1-3 研究動機與目的 8
第二章 控制系統介紹 10
2-1 系統架構 10
2-2 感測單元 11
2-2-1 超音波流量計 11
2-2-2 壓力感測器 11
2-3 介面單元 12
2-4 控制器 13
2-5 致動器與受控體 13
第三章 控制邏輯與實驗步驟 16
3-1 PI控制器介紹 16
3-2 PI控制邏輯 19
3-2-1 圖形控制介面 20
3-2-2 控制程式演算邏輯 21
3-3 實驗步驟 23
3-3-1 實驗校驗與設置 23
3-3-2 血管自動調適機制模擬方法 24
第四章 實驗結果與討論 27
4-1 致動器線性度驗證 27
4-2 步階響應 27
4-3 正弦響應 28
4-4 指標參數設計 29
4-5 腦血流自動調適機制 32
4-5-1 自動調適機制區間驗證 32
4-5-2 流量與壓力變化調節 33
4-5-3 灌流脈動波形 34
4-6 反脈動輔助對腦血管自動調適之影響 35
4-6-1 控制腦循環之總體阻抗 35
4-6-2 控制中腦動脈阻抗 37
第五章 結論與未來工作 39
5-1 結論 39
5-2 未來工作 40
參考文獻 42
附錄一 PI控制器參數整定 45
[1] Richard EK. Cardiovascular Physiology Concepts, 2nd ed. Ohio: Athens, 2011.
[2] Cindy LS, William JG. Principles of human physiology, 3rd ed. San Francisco : Pearson/Benjamin Cummings, 2008.
[3] Mogens F. Cerebral circulation:The reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psychiatry 37: 351-364, 1937.
[4] Mogens F. Cerebral circulation II:Reaction of pial arteries to increase in blood pressure. Arch Neurol Psychiatry 41: 260-268, 1939.
[5] Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 39: 183-238, 1959.
[6] Ekstrom-Jodal B, Haggendal E, Under LE, Nilsson NJ. Cerebral blood flow autoregulation at high arterial pressures and different levels of carbon dioxide tension. Eur Neurol 6: 6-10, 1971.
[7] Symon L, Held K, Dorsch NWC. A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4: 139-147, 1973.
[8] Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 106: 723–731, 2000.
[9] Patel SM, Allaire PE, Wood HG, Adams JM, Olsen DB. Design and construction of a mock human circulatory system. Summer Bioengineering Conference, June, 25–29, 2003.
[10] Timms D, Hayne M, McNeil K, Galbraith A. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices. Int J Artif Organs 29: 564-572, 2005.
[11] Stergiopulos N, Westerho BE, Westerhof N. Total Arterial inertance as the fourth element of the windkessel Model. Am J Physiol. 276: H81-H88, 1999.
[12] Giridharan GA, Ewert DL, Pantalos GM. Left ventricular and myocardial perfusion responses to volume unloading and afterload reduction in a computer simulation. ASAIO J 50: 512-518, 2004.
[13] Milnor WR. Hemodynamics. Williams & Wilkins, 1989.
[14] Sharp MK, Dharmalingam RK. Development of a Hydraulic Model of the Human Systemic Circulation. ASAIO J 45: 535-540, 1999.
[15] Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40: 1794-1805, 2007.
[16] Moore S, David T, Chase JG, Arnold J, Fink J. 3D models of blood flow in the cerebral vasculature. J Biomech 39: 1454-1463, 2006.
[17] Rosenberg G, Phillips WM, Landis DL, Pierce WS. Design and evaluation of the pennsylvania state university mock circulatory system. ASAIO J 4: 41-49, 1981.
[18] Minorsky N. Directional stability of automatically steered bodies. J Am Soc Nav Eng 34: 280-390, 1922.
[19] Grebe JJ, Boundy RH, Cermak RW. The control of chemical processes. Trans Am Inst Chem Eng 29: 211-256, 1933.
[20] Ivanoff A. Theoretical foundations of the automatic regulation of temperature. J Inst Fuel 7: 117-138, 1934.
[21] Mitereff SD. Principles underlying the rational solution of automatic control problems. Trans Am Soc Mech Eng 57: 159-163, 1935.
[22] Callander A, Hartree DR, Porter A. Time lag in a control system. Phil Trans R Soc London A 235: 415-444, 1936.
[23] Porter A, Callander A, Stevenson AB. Time lag in a control system – II. Phil Trans R Soc London A 161: 460-476, 1937.
[24] Ziegler JG, Nichols NB. Optimum setting for automatic controllers. Trans ASME 64: 759-768, 1942.
[25] Yazici B, Erdoğmuş B, Tugay A. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagn Interv Radiol 11: 195–198, 2005.
[26] Gao EY, Young WL, Ornstein E, Pile-Spellman J, Ma Q. A theoretical model of cerebral haemodynamics: application to the study of arteriovenous malformations. J Cereb Blood Flow Metab 17: 905–918, 1997.
[27] Olufsen MS, Nadim A, Lipsitz LA. Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Physiol 282: 611-622, 2002.
[28] Strebel S, Lam AM, Matta B, Mayberg, TS, Aaslid R, Newell, DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 83: 66–76, 1995.
[29] Tiecks FP, Lam AM, Aaslid R, Newell, DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26: 1014–1019, 1995.
[30] Ang KH, Chong G, Li Y. PID control system analysis, design, and technology. IEEE Trans Control Systems Tech 13: 559-576, 2005.
[31] 陳瑞龍, “聚氨酯人工心瓣之製作與性能評估,成功大學航空太空工程研究所論文, 2003.
[32] 林純玄, “反脈動左心室輔助器之離體測試, 成功大學航空太空工程研究所論文, 2006.
[33] 李炳宏, “反脈動主動脈側血泵輔助下之波傳現象實驗探討, 成功大學航空太空工程研究所論文, 2009.
[34] 陳耀錡, “反脈動主動脈側血泵輔助下冠狀動脈相位流之離體實驗探討, 成功大學航空太空工程研究所論文, 2011.
[35] 劉建麟, “反脈動輔助對腦血管循環之影響, 成功大學航空太空工程研究所論文, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top