跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉益仲
研究生(外文):Yi-ChungLiu
論文名稱:低雷諾數效應下低展弦比薄翼之空氣動力特性研究
論文名稱(外文):Investigation on Low-Reynolds Number Aerodynamic Characteristics of Low-Aspect Ratio Thin Wings
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:221
中文關鍵詞:機翼翼尖低展弦比臨界雷諾數流場回貼翼前緣分離渦渦流升力渦流溢放
外文關鍵詞:wingtiplow aspect ratioscritical Reynolds numbersflow reattachmentleading-edge separation vorticesvortex liftvortex shedding
相關次數:
  • 被引用被引用:2
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
為了近一步了解低展弦比機翼在臨界雷諾數之空氣動力與相對應之流場結構特性,在機翼上表面之層流及紊流分離剪切層,受翼尖上捲渦流之影響,是否為導致機翼上表面,因流場回貼,而延緩失速之流場完全分離機制等特性,本論文乃利用低速風洞之力量測、速度量測及可視化實驗技術,來研究展弦比介於1.0~3.0之矩形薄翼,在雷諾數介於104~105區間之空氣動力及流場結構特性,並透過機翼上表面及近尾流流場區之相關性流場結構分析,確立,翼尖上捲渦流對於機翼流場特性之影響。在空氣動力特性實驗部份,本研究包含機翼之升力、阻力、升力之線性與非線性斜率及升阻比分析,而在相對應之流場結構研究部分中,則包含平均與擾動量速度量測、流場結構特徵頻率分析及機翼表面及上翼面之油流與煙流之可視化實驗分析,並進一步以實驗之定性及定量化的比對方式,來探討機翼上表面及下游近尾流區域之流場特性及相對應之空氣動力特性分析。根據實驗結果,機翼翼尖之上捲渦流,乃是迫使低展弦比機翼上翼面,在近翼前緣位置處之層流分離流場於攻角增加條件下,仍否維持回貼,並改變渦流溢放特性於尾流流場區域之重要因素。當展弦比小於1.6時,明顯的表現出渦流升力在升力曲線的非線性增加及展弦比為1.0的薄翼之高達38度左右的高攻角失速特性。而相對應的可視化實驗及定量化之速度量測實驗分析中,也可以發現因翼尖上捲渦流之影響,導致高攻角大尺度翼前緣分離渦之低頻流場特性與造成渦流升力之二次流流場結構位置及分布,並進一步確立出分離及回貼機制受翼尖上捲渦流所造成的下洗流流場結構完整性及分布情形之影響。由實驗結果,我們也可以進一步於低展弦比流場特性研究中,歸納出隨攻角增加而產生的三個主要流場特性。分別為當攻角小於20度時,機翼回貼及渦流溢放仍相當明顯,而當攻角高於30度時,渦流溢放特性並不顯著,取而代之的為大尺度低頻之翼前緣分離渦分布於機翼上翼面。最後,直至攻角高達40度後,完全分離特性發生,機翼完全失速。本論文所擁有的實驗結果,將足以用來解釋並驗證低展弦比機翼在空氣動力特性中,額外增加的渦流升力及高攻角失速特性及其相對應的二次流流場分布及大尺度低頻流場結構,並提供重要的參考數據資料給後續的數值模擬研究,及實際的低展弦比無人飛行載具設計。


The relationship between aerodynamic characteristics and corresponding flow structures with interaction of separated shear layer and wingtip roll up vortex on the upper surface and near wake region of low aspect ratios wings at critical Reynolds numbers have been investigated by an experimental study with the rectangular thin wings of aspect ratio varying from 1.0 to 3.0 and Reynolds numbers between 104 and 105. The aerodynamic properties have been studied include lift, drag, slopes at linear and nonlinear range of the lift curves and lift-to-drag ratios. The corresponding flow structures regarding the leading-edge separation shear layer with affection of wingtip roll up vortex at upper surface and down stream of near wake flow regions of the wings also being investigated by techniques of the flow visualization, force and velocity measurements. The results indicated that the wing tip roll up vortex closed to upper surface of wing would force the laminar separation of flow structure remains reattached near the wing leading-edge. It changes the behaviors of leading-edge separation vortices shedding to wake flow regions with variation of angles of attack. This roll up flow structure can be moved from the tip to the middle of wing as angle of attack increased. It disappear and following with a large portion of wake flow region after stall. The high stall angle of attack and vortex lift are clearly manifested owing to the nonlinear increasing in the lift curves as the aspect ratio reaches less than 1.6. For the example of wing with aspect ratio equal to1.0, the stall angle of attack can increase up to 380 at high nonlinear of lift. The corresponding flow structure of large scale separation vortex with behaviors of low characteristic frequency at high angle of attack and the existence of secondary flow region with variation of shedding frequency at different spanwise location of wing can be used to explain above aerodynamic behaviors. The experimental results have concluded well that the flow field at upper surface of low aspect ratio wing can be divided into three types of flow characteristics. As the angle of attack is less than 200, the affection of tip roll up vortex is clearly near the location of wingtip and groups up as increasing of angle of attack which caused the behavior of flow reattached and constructed the secondary flow structure. With angle of attack up to 300, the flow reattachment is maintained, however, the behaviors of vortex shedding is fade away and gradually replaced by the large scale but weakness and incoherence structure of a vertical flow. Finally, as the angle of attack is increased to stall condition, the upper region of wing is covered with a large portion of fully separated flow and the wing tip roll up vertical flow structure is moved toward the wingtip side which causes the deep stall aerodynamic characteristics. This investigation has provided a well documented experimental result which is a very helpful data base for the numerical simulation of aerodynamic characteristic and the design of unmanned aerial vehicles.
ABSTRACT IN CHINESE........................................i
ABSTRACT.................................................xii
ACKNOWLEDGEMENT..........................................xiv
CONTENTS..................................................xv
LIST OF TABLES.........................................xviii
LIST OF FIGURES..........................................xix
NOMENCLATURE............................................xxxi

CHAPTER I INTRODUCTION.....................................1
1.1 Motivation and Issues Description......................1
1.2 Low-Reynolds Numbers Aerodynamic Issues................5
1.2.1 Aerodynamic and Flow Properties of 2-D Airfoil.......5
1.2.2 Low Aspect Ratio Wing Aerodynamics..................14
1.3 Objectives............................................20

CHAPTER II EXPERIMENTAL APPARATUS.........................22
2.1 Subsonic Low Speed Wind Tunnel........................22
2.2 Pitot Static Tube And Pressure Transducer.............25
2.3 Force Measurement System..............................27
2.3.1 Analog/Digital (A/D) Converter and Amplifier........27
2.3.2 Six-Component External Strain Gauge Balance.........29
2.3.3 Angle of Attack Servo Device........................33
2.4 Velocity Measurement System...........................34
2.4.1 Hot Wire Anemometer and Cross Type Wire.............34
2.4.2 Data Acquisition System.............................43
2.4.3 Step Motor Controller and Traversing Mechanism......44
2.5 Test Model............................................45
2.6 Coordinate of Velocity Measurement System.............47
2.7 Flow Visualization System.............................51
2.8 Uncertainty Analysis Of Experimental Data.............54

CHAPTER III VISUALIZATION OF FLOW STRUCTURE...............57
3.1 The Visualization Of Smoke Flow Property..............58
3.1.1 Streamwise Direction of Flow Visualization..........58
3.1.2 Spanwise Direction of Flow Visualization............63
3.2 The Flow Properties Of Surface Oil Flow Visualization......69

CHAPTER IV AERODYNAMIC PROPERTIES OF LIFT AND DRAG........83
4.1 Basic Measurement Of Lift And Drag Coefficient........83
4.1.1 Reynolds Numbers Effect at Thin Wing................83
4.1.2 Variation of Aspect Ratios at Thin Wing.............86
4.1.3 Variation of Thickness Ratios at Wing Section.......90
4.2 Slope Of Lift Curve...................................92
4.2.1 Linearity Analysis of Slope of Lift Curves..........92
4.2.2 Nonlinearity Analysis of Slope of Lift Curves.......95
4.3 The Parameter Of Drag Polar..........................100
4.4 The Parameter Of Lift-To-Drag Ratio..................104

CHAPTER V CHARACTERISTICS OF FLOW STRUCTURES.............108
5.1 Velocity Profiles And Contours Of Flow Structures....108
5.1.1 Upper Surface of Flow Regions......................109
5.1.2 Wing Surface of Flow Regions.......................115
5.1.3 Flow Regions at Wing Trailing-Edge.................122
5.2 Power Spectra Analysis Of Velocity Fluctuation.......128
5.2.1 Streamwise Direction of Flow Regions...............134
5.2.2 Different Spanwise Positon of Flow Regions.........143

CHAPTER VI CONCLUSION AND PERSPECTIVE...................147
6.1 Conclusion...........................................147
6.2 Perspective Improvement..............................150

REFERENCES...............................................152
APPENDIX A MEAN AND FLUCTUATED OF FLOW PROPERTY.........159
APPENDIX B POWER SPECTRA OF FLUCTUATED VELOCITY.........191
APPENDIX C MATLAB CODE FOR POWER SPECTRA ANALYSIS.......214
PUBLICATION LIST.........................................219
VITA.....................................................221

[1] Anderson, J. J., Aerodynamics For Engineers, Prentice Hall, Fourth Edition, Chap. 5, 2002, pp. 183-185.
[2] Anderson, J. D. Jr., Fundamentals of Aerodynamics, McGraw Hill Higher Education, Third Edition, New York, Chap. 5, 1991, pp. 367-380.
[3] Broeren, A. P., and Bragg, M. B., “Unsteady Stalling Characteristics of Thin Airfoils at Low Reynolds Number, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, T.J. Mueller, Ed., Progress in Aeronautics and Astronautics, Vol. 195, Chapter 10, 2001, pp. 191-213.
[4] Bertin, J. J., Aerodynamics for Engineers, Fourth Edition, Book, Prentice Hall, Chap 7, 2002, pp 230-233.
[5] Bartlett, G. E., and Vidal, R. J., “Experimental Investigation of Influence of Edge Shape on the Aerodynamic Characteristics of Low-Aspect-Ratio Wings at Low Speed, J. of Aeronautical Sciences, Vol. 22, No.8, 1955, pp. 517-533.
[6] Bradshaw P., An Introduction to Turbulence and its Measurements, (Oxford: Pergamon), Pergamon Press, 1971.
[7] Bendat, J. S., and Piersol, A. G., Random Data Analysis and Measurement Procedures, Meas. Sci. Technol. 11 1825, A Wiley-Interscience Publication, Third Editions, 2000, pp 86-115.
[8] Carmichael, B. H., “Low Reynolds Number Airfoil Survey, NASA Contractor Report 165803, 1981.
[9] Chow, J. S., Bradshaw, P., Zilliac., and Gregoy, G., “Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex, AIAA Journal, Vol. 35, No. 10, 1997, pp.1561-1567.
[10] Ellington, C. P. and Usherwood, J. R., “Lift and Drag Characteristics of Rotary and Flapping Wings, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, AIAA, Vol. 195, Chapter 12, 2001, pp. 231-248.
[11] Fox, R. W. and McDonald, A. T., Introduction to Fluid Mechanics, John Wiley, Fifth Edition, Chap. 9, 1976, pp. 416-420.
[12] Gas-el-Hak M., Flow Control: Passive, Active, and Reactive Flow Management, Book, Cambridge University Press, 2000.
[13] Gault, D. E., “Boundary-Layer and Stalling Characteristics of the NACA 63-009 Airfoil Section, NACA TN 1894, 1949.
[14] Gunaydinoglu, E. and Kurtulus, D. F., “Numerical Investigation of Pure Plunge and Pitch/Plunge Motions at Low Reynolds Numbers, International Symposium of Light-Weight Unmanned Aerial Vehicle Systems and Subsystems, Ostend, Belgium, 2009.
[15] Hsiao, F. B., Liu, C. F., and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a Low Reynolds Number Airfoil, AIAA Journal, Vol. 27, 1989, pp.129-137.
[16] Hsiao, F. B., Liu, Y. C., “Aerodynamic Investigations of Low-Aspect-Ratio Thin Plate Wings at Low Reynolds Numbers, Journal of Mechanics, Journal of Mechanics, Vol.28, No.1, 2012, pp. 77-89.
[17] Hsiao, F. B., Lin, C. Y., Liu, Y. C., and Wang, D. B., “Thickness Effect on Low -aspect-ratio Wing Aerodynamic Characteristics at a Low Reynolds Number, Journal of Mechanics, Vol.24, No.3, 2008, pp. 223-228.
[18] Hoerner, S. F., and Borst, H.V., Fluid-dynamic Lift, Practical Information on Aerodynamic and Hydrodynamic Lift, Hoerner Fluid Dynamics, Brick Town, NJ, 1975.
[19] Huang, R. F., Wu, J. H., Jeng, J.H., and Chen, R. C., “Surface Flow and Vortex Shedding of an Impulsively Started Wing, J. Fluid Mech, Vol.441, 2001, pp. 265-292.
[20] Huang, R. F., and Lin, C. L., “Vortex Shedding and Shear-layer Instability of Wing at Low-Reynolds Numbers, AIAA J, Vol. 33, 1995, pp. 1398-1403.
[21] Huang, R. F., and Lee, H. W., “Turbulence Effect on Frequency Characteristics of Unsteady Motions in Wake of Wing, AIAA J, Vol.38, 2000, pp. 87-94.
[22] Ho, C. M., “Vortex Dynamics of Unsteady Flows, Invited lecture presented at 1st National Fluid Dynamics Congress, Cincinnati, Oh, July 25-28, 1988.
[23] Hsiao, F. B., Shyu, J. Y., Liu, C. F. and Shyu, R. N., “Experimental Study of Acoustically Excited Flow Over a Circular Cylinder, Transport Phenomena in the Thermal Control, edited by G. J. Hwang, Hemisphere Publishing Co., New York, 1989, pp. 537-546.
[24] Jorgensen, F. E., How to measure turbulence with hot-wire anemometers, a practical guide, Dantec Dynamics, 2002.
[25] Kaplan, S. M., and Altman, A., “Wake Vorticity Measurements for Low Aspect Ratio Wings at Low Reynolds Numbers, Journal of Aircraft, Vol. 44, No. 1, 2007, pp.241-251.
[26] Kozlov, V. V., and Dovgal, A.V., Separated Flows and Jets, Springer-Verlag, International Union of Theoretical and Applied Mechanics, 1991.
[27] Lian, Y. and shyy, W., “Three-dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Applications, J. of aircraft, Vol. 44, No.5, 2005, pp. 865-873.
[28] Lowry, J. G. and Polhamus, E. C., “A Method for Predicting Lift Increments due to Flap Deflection at Low Angles of Attack in Incompressible Flow, NACA TN 3911, 1957.
[29] Liu, C. F., “Control of Airfoil Performance by Local Excitation, Ph.D. Dissertation, Institute of Aeronautics and Astronautics, National Cheng Kang University, 1988, Tainan, R.O.C.
[30] Mueller, T. J., “An Overview of Micro Air Vehicle Aerodynamics, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, T.J. Mueller, Ed., Progress in Aeronautics and Astronautics, Vol. 195, 2001, Chapter 1, pp. 1-10.
[31] McMasters, J. H., and Henderson, M. L., “Low speed Single Element Airfoil Synthesis, Technical Soaring, Vol. 2, No. 2, 1980, pp. 1-21.
[32] Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis, Journal of Aircraft, Vol.22, 1985, pp. 763-770.
[33] McAuliffe, B. R., and Yaras, M. I., “Transition Mechanisms in Separation Bubble under Low and Elevated Free Stream Turbulence, In Proceeding of the ASME Turbo Expo, Montreal, Canada, 2007, GT2007-27605.
[34] McCullough, G. B., and Gault, D. E., “Example of Three Representative Types of Airfoil-Section Stall at Low-Speed, NACA TN 2502, 1951.
[35] Mueller, T. J. and Torres, G. E., “Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers, AIAA Journal, Vol. 42, 2004, No. 5, pp. 865-873.
[36] Moro, J. P., Vukoslavcevic, P. V., and Blet, V., “A Method to Calibrate a Hot-Wire X-Probe for Applications in Low-Speed, Variable-Temperature Flow, Meas. Sci. Technol, Vol.14, 2003, pp.1054-1062.
[37] Morse, D. R., and Liburdy, J. A., “Vortex Dynamics and Shedding of a Low Aspect Ratio, Flat Wing at Low Reynolds Numbers and High Angle of Attack, Journal of Fluids Engineering, Vol. 131, No. 5, 051202-1, 2009.
[38] Ol, M. V., and Gharib, M., “Leading-Edge Vortex Structure of Nonslender Delta Wing at Low Reynolds Number, AIAA J, Vol. 41, NO. 1, 2003, pp 16-26.
[39] Pelletier, A., and Mueller, T. J., “Low Reynolds Number Aerodynamics of Low- Aspect-Ratio, Thin/Flat/Cambered-Plate Wings, J. of Aircraft, Vol. 37, No.5, 2000, pp. 825-832.
[40] Polhamus, E. C., “Predictions of Vortex-Lift Characteristics by a Leading-Edge- Suction Analogy, J. of Aircraft, Vol. 8, NO 4, 1971, pp. 193-199.
[41] Pattenden, R. J., Turnock, S. R., and Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane, Experiments in Fluids, Vol.39, No 1, 2005, pp.10–21.
[42] Polhamus, E. C., “A Concept of The Vortex Lift of Sharp Edge Delta Wings Based on a Leading-edge-suction Analogy, Technical Report TND-3767, NASA, 1966.
[43] Pierce, A. D., ACOUSTICS An Introduction to its Physical Principles and Applications, Acoustical Society of America through the American Institute of Physics, New York, Chap. 2, 1989, pp.60-65.
[44] RTO Multiple., Unsteady Aerodynamics for Micro Air Vehicles, Research and Technology Organization (RTO) Technical Report (TR), AVT-149, 2010, pp. 1-9.
[45] Roshko, A., “On the Drag and Shedding Frequency of two-dimensional bluff bodies, NACA, TN 3169, 1954.
[46] Selig, M. S., Gopalarathnam, A., Giguere, Ph., and Lyon, Ch.A., “Systematic Airfoil Design Studies at Low Reynolds Numbers, AIAA Journal, Vol. 195, 2001, pp.143-161.
[47] Shyu, R. N., “Improvement of Airfoil Stalling Performance by Internal Periodic Excitation at Leading Edge, Ph.D. Dissertation, Institute of Aeronautics and Astronautics, National Cheng Kang University, 1991, Tainan, R.O.C.
[48] Torres, G. E.., “Aerodynamics of Low Aspect Ratio Wings at Low Reynolds Numbers With Applications to Micro Air Vehicle Design, the thesis of doctor of Philosophy, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana, 2002.
[49] Teng, Y., Liu, Y. C., Wang, D. B., and Hsiao, F. B., “Aerodynamic Transition and Velocity Fluid Study of a Finite Wing in Low Reynolds Numbers, 6th International Symposium on Advanced Science and Technology in Experimental Mechanics, 3-5 November, 2011, Osaka, Japan.
[50] Tang, J., and Zhu K. Q., “Numerical and Experimental study of flow structure of low-Aspect-Ratio Wing, Journal of aircraft Vol. 41, No.5,2004, pp. 1196-1201.
[51] Taira, K., and Colonius, T., “Three-dimensional Fluid around Low aspect ratio Flat Plate Wings at low Reynolds numbers, J. Fluid Mech, Vol. 623, 2009, pp.187-207.
[52] Wilson, P.G., and Pauley, L. L., “Two and Three-dimensional Large-eddy Simulations of a Transitional Separation Bubble, Phys. Fluids, Vol. 10, 1998, pp. 2932-2940.
[53] Watmuff, J. H., “Evolution of a Wave Packet into Vortex Loops in a Laminar Separation Bubble, J. Fluid Mech, Vol. 397, 1999, pp. 119-169.
[54] Yarusevych, S., Sullivan, P. E., and Kawall, J. G., “Coherent Structures in Airfoil Boundary Layer and Wake at Low Reynolds Numbers, Phys. Fluids Vol.18, 2006, pp. 1-11.
[55] Yarusevych, S., Sullivan, P. E., and Kawall, J. G., “On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows, J. Fluid Mechanics, Vol. 632, 2009, pp. 245-271.
[56] Yarusevych, S., Kawall, J. G., and Sullivan, P. E., “Separated-Shear-Layer Development on an Airfoil at Low Reynolds Numbers, AIAA Journal, Vol. 46, 2008, pp. 3060-3069.
[57] Zimmerman, C. H., “Characteristics of Clark Y Airfoil of Small Aspect Ratios, Technical Report TR 431, NACA, 1932.
[58] Zuhal, L., and Gharib, M., “Near Field Dynamics of Wing Tip Vortices, AIAA Fluid Dynamics Conference & Exhibit, 31st, Anaheim, CA; USA, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top