跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧奕丞
研究生(外文):I-ChenLu
論文名稱:植入解剖位置對反脈動循環輔助功效之比較
論文名稱(外文):Comparison of Implantation Site Effect On the Efficacy of Extra-vascular Counterpulsation
指導教授:陸鵬舉陸鵬舉引用關係
指導教授(外文):Pong-Jeu Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:75
中文關鍵詞:反脈動循環輔助仿生循環平台鎖骨下動脈偷血
外文關鍵詞:Counterpulsation Circulatory SupportMock Circulation LoopSubclavian ArteryBlood Reversal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
長期反脈動(counterpulsatile)輔助設備在近年來發展成為治療心衰竭(Heart Failure)的方法。更加簡單並且安全的手術使得反脈動設備能早期介入,以達到心肌(Myocardial)反向重建(Reverse Remodeling)或停止或減緩心衰竭惡化的可能。反脈動設備藉由鎖骨下動脈(Subclavian Artery)以及降主動脈(Descending Aorta)植入至人體循環系統均被採用。本研究使用包含體循環,冠狀動脈與腦循環的體外循環測試平台,探討不同植入位置的輔助功效。40 ml的主動脈側血泵(Para-aortic Blood Pump; 簡稱PABP)搭配不同的進/出口通道則被分別植入於降主動脈與鎖骨下動脈;標準血動力與代謝指標則用於評估輔助功效。反脈動輔助造成可能不利於循環之影響也在探討之列。大體上而言,於降主動脈之反脈動輔助功效遠佳於於鎖骨下動脈之反脈動輔助效果。當於鎖骨下反脈動輔助時,發現過去未討論之右後腦動脈(Right Posterior Cerebral Artery; 簡稱RPCA)與頸部脊椎 (Right Vertebral Artery; 簡稱RVA)的偷血(Blood Steal)現象。此誘發之缺血乃是血泵於鎖骨下動脈收縮卸載(Systolic Unloading)與局部循環(Regional Circulation)所造成。
Long-term counterpulsatile support devices arose in recent years as a renewed approach for treating heart failure. Simpler and safer surgical procedures enable those counterpulsatile devices to be implanted earlier, intending to achieve possible myocardial reverse remodeling or to stop or slow down the deterioration of heart failure. Implantation via subclavian artery or descending aorta has been proposed for connecting counterpulsatile devices to human circulatory system. To study the implant site effect on device efficacy, an in-vitro mock loop comprising systemic, coronary and cerebral circulations with human arterial anatomy was used. An original para-aortic blood pump (PABP) and its modified variant with scaled-down inflow/outflow tract, both having 40 ml stroke volume, were employed respectively as the descending and subclavian counterpulsation device. Standard hemodynamic and metabolic indices regarding cardiac support were obtained and compared to evaluate the counterpulsation efficacy. Possible adverse effects due to altered circulation associated with counterpulsation support were also examined. In general, descending aortic implant achieved much better counterpulsation effectiveness than did subclavian implant. When supported by subclavian counterpulsation, severe device-induced blood steal, which was not discovered previously, was found in the right posterior cerebral artery (RPCA) and the cervicothoracic part of the spinal cord circulation. This device-induced ischemic complication was caused by the systolic unloading of the pump on the regional circulation associated with the site effect of subclavian implantation.
中文摘要 I
ABSTRACT III
ACKNOWLEDGEMENT IV
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURE X
CHAPTER I INTRODUCTION 1
1.1 Heart Failure 1
1.2 Ventricular Assist Device 2
1.3 Counterpulsatile Circulatory Support 4
1.3.1 The Mechanism of Counterpulsation 4
1.3.2 Counterpulsatile Support Devices 5
1.4 Mock Circulation Loop 7
1.5 Research Objectives 8
Chapter II MATERIAL AND METHODS 10
2.1 Loop Parameters 10
2.2 Material 12
2.3 Methods 18
2.4 Counterpulsation Performance Indices 21
Chapter III RESULTS AND DISCUSSIONS 25
3.1 Validation of Mock Circulation Loop 25
3.1.1 Systemic Parameter Determination and Validation 25
3.1.2 Healthy Heart Baseline 27
3.1.3 Failing Heart Baseline 29
3.2 Extra-vascular Counterpulsation Comparison 29
3.2.1 Descending Aortic Counterpulsation 30
3.2.2 Subclavian Counterpulsation 30
3.3 Optimal Deflation Timing Design 32
3.3.1 Descending Aortic Deflation Timing 33
3.3.2 Subclavian Deflation Timing 33
3.4 Posture Effect 34
3.5 Vessel Collapse 35
Chapter IV CONCLUDING REMARKS 36
4.1 Conclusion 36
4.2 Future work 37
Reference 38
[1] Stevenson LW, Couper G. On the fledgling field of mechanical circulatory support. J Am Coll Cardiol. 50: 748-751, 2007.
[2] Mancini D, Burkhoff D. Mechanical devive-based methods of managing and treating heart failure. Circulation. 112: 438-448, 2005.
[3] Wohlschlaeger J, Schmitz KJ, Schmid C, Schmid KW, Keul P, Takeda A, Weis S, Levkau B, Baba HA. Reverse remodeling following insertion of left ventricular assist devices (LVAD): A review of the morphological and molecular changes. Cardiovasc Res. 68: 376-386, 2005.
[4] Frazier O.H, James K. Kirklin. Mechanical circulatory support.
[5] Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, Toninato C, Missov E, Pritzker M, Martin C, Garry D, Thomas W, Joyce L. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist device. J Thorac Cardiovasc Surg. 137: 208-215, 2008.
[6] Letsou GV, Shah N, Gregoric ID, Myers TJ, Delgado R, Frazier OH. Gastrointestinal bleeding from arteriovenous malformations in patients supported by Jarvik 2000 axial-flow ventricular assist device. J Heart Lung Transplant. 24:105-109, 2005.
[7] Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B, Bogaev RC, Frazier OH. Arteriovenous malformations and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 30: 849-853, 2011.
[8] Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte JV, Russell SD. Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant. 27: 1269-1274, 2008.
[9] Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail. 3:668-674, 2010.
[10] El-Banayosy A, Körfer R, Arusoglu L, Kizner L, Morshuis M, Milting H, Tenderich G, Fey O, Minami K. Device and patient management in a bridge-to-transplant setting. Ann Thorac Surg. 71: S98-S102, 2001.
[11] Lietz K, Miller LW. Destination therapy: current results and future promise. Semin Thorac Cardiovasc Surg. 20: 225-233, 2008.
[12] Pieske B. Reverse remodeling in heart failure - fact or fiction? Eur Heart J. 6: 55-78, 2004.
[13] Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: Basic and clinical implications for myocardial recovery. J Card Fail. 12: 227-239, 2006.
[14] Edited by George S. Cardiovascular hemodynamics for clinician. pp 245-252, 1st ed. Blackwell, Massachusetts, USA, 2008.
[15] Ferguson JJ 3rd, Cohen M, Freedman RJ Jr, Stone GW, Miller MF, Joseph DL, Ohman EM. The current practice of intra-aortic balloon counterpulsation: Results from the benchmark registry. J Am Coll Cardial. 38: 1456-1462, 2001.
[16] Maccioli G, Lucas W, Norfleet E. The intra-aortic balloon pump: a review. J Cardiothorac Anesth. 2: 365-373, 1988.
[17] Freed PS, Wasfie T, Zado B, Kantrowitz A. Intraaortic balloon pumping for prolonged circulatory support. Am J Cardiol. 61: 554-557, 1988.
[18] Manord JD, Garrard CL, Mehra MR, Sternbergh WC 3rd, Ballinger B, Ventura HO, Stapleton DD, Smart FW, Bowen JC, Money SR. Implications for the vascular surgeon with prolonged ( 3 to 89 days) intraaortic balloon pump counterpulsation. J Vasc Surg. 26: 511-516, 1997.
[19] Arafa OE, Pedersen TH, Svennevig JL, Fosse E, Geiran OR. Vascular complications of the intraaortic balloon pump in patients undergoing open heart operations: 15-year experience. Ann Thorac Surg. 67: 645-651, 1999.
[20] Koenig SC, Spence PA, Pantalos GM, Dowling RD, Litwak KN. Development and early testing of a simple subcutaneous counterpulsation device. ASAIO J. 52: 362-367, 2006.
[21] Giridharan GA, Pantalos GM, Litwak KN, Spence PA, Koenig SC. Predicted hemodynamics benefits of counterpulsation therapy using a superficial surgical approach. ASAIO J. 52: 39-46, 2006.
[22] William R. Milnor. Hemodynamics. pp102-106, 2nd ed. Williams & Wilkins, Balitmore, USA.
[23] Richard E. Klabunde. Cardiovascular physiology concept. 2nd ed. Williams & Wilkins, Balitmore, USA.
[24] Bekeredjin R. Valvular heart disease. Circulation. 112: 125-134, 2005.
[25] De Boorder MJ, van der Grond J, van Dongen AJ, Klijn CJ, Jaap Kappelle L, Van Rijk PP, Hendrikse J. Spect measurements of regional cerebral perfusion and carbondioxide reactivity: Correlation with cerebral collaterals in internal carotid artery occlusive disease. J Neurol. 253: 1285-1291, 2006.
[26] Viedma A, Jiménez-Ortiz C, Marco V. Extended Willis circle model to explain clinical observations in periorbital arterial flow. J Biomech. 30: 265-272, 1997.
[27] Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ. Modeling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech. 40: 1794-1805, 2007.
[28] Alejandro S, Veronica N, Edward G, Howard A Riina, Y Pierre G, Athos P. Vascular anatomy of the spinal cord. J Neurointervent. 4: 67-74, 2012.
[29] Di Chiro G, Fried LC. Blood flow currents in spinal cord arteries. Neurology. 21: 1088-1096, 1971.
[30] Buxton PH. Spinal stroke. Brain. 97:539-550, 1974.
[31] Olufsen M. Modeling the arterial system with reference to an anesthesia simulator. Ph. D. Thesis, Roskilde, IMFUFA, ROSKILDE University, Denmark, Text NO. 345, 1998.
[32] Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 2: 121-143, 1969.
[33] Kolyva C, Biglino G, Pepper JR, Khir AW. A mock circulatory system with physiological sistribution of terminal resistance and compliance: Application for testing the intra-aortic balloon pump. Artif Organs. 36: E62-70, 2010.
[34] Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with application to arterial and aortic stenoses. J Biomech. 25: 1477-1488, 1992.
[35] Burton A. C. Physiology and Biophysice of the circulation. Yearbook Medical Publications, Chicago, 1965
[36] Barnea O. Cardiac energy considerations during intraaortic balloon pumping. IEEE Trans Biomed Eng. 37: 170-181.
[37] SARNOFF SJ, BRAUNWALD E, WELCH GH Jr, CASE RB, STAINSBY WN, MACRUZ R.. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. AJP. 192:148-156, 1957.
[38] Papaioannou TG, Stefanadis C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J. 51:296-300, 2005.
[39] Proctor HJ, Starek PJ, Fry J. An investigation of endocardial viability ration myocardial failure following prolonged hemorrhagic shock. Ann Surg. 181: 893-895, 1975.
[40] Lu PJ, Lin PY, Yang CF, Hung CH, Chan MY, Hsu TC.Hemodynamic and metabolic effects of para-versus intraaortic counterpulsatile circulation supports. ASAIO J. 57: 19-25, 2011.
[41] Mills CJ,Gabe IT, Gault JH, Mason DT, Ross J Jr, Braunwald E, Shillingford JP. Pressure-flow relationships and vascular impedance in man. Cardiovascular Res. 4: 405-417, 1970
[42] Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of the one-dimensional of the systemic tree. Am J Physiol Heart Circ Physiol. 297: H208-222, 2009.
[43] Giovanni Di Chiro, Larry C. Fried. Blood flow currents in spinal cord arteries. Neurology. 21: 1088-1096, 1971.
[44] 陳瑞龍, “聚氨酯人工心瓣之製作與性能評估, 成功大學航空太工程研究所論文, 2003.
[45] 陳耀錡, “反脈動主動脈側血泵輔助下冠狀動脈相位流之離體實驗探討, 成功大學航空太工程研究所論文, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top