跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾俊瑋
研究生(外文):Chun-WeiTseng
論文名稱:無閥阻抗式微泵應用於直接硼氫化鈉燃料電池性能之研究
論文名稱(外文):Application of Valveless Impedance Pumps on a DBFC Performance
指導教授:溫志湧
指導教授(外文):Chih-Yung Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:直接硼氫化鈉-過氧化氫燃料電池(DBFC)無閥阻抗水泵單電池
外文關鍵詞:DBFCValveless Impedance Pumpsingle cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以直接硼氫化鈉-過氧化氫燃料電池(Direct Sodium Borohydride – Hydrogen Peroxide Fuel Cell, DBFC)結合無閥阻抗式水泵進行探討操作參數對性能的影響。
研究首先使用自行設計的電池本體與蠕動式水泵進行實驗,探討的操作參數包括流道設計、陽極端燃料供給流率、鎖付扭力及陽極端燃料濃度對電池行能影響。
為了未來燃料電池系統微型化的目的,研究接著自行製作一以凸輪驅動的圓形無閥阻抗泵,並將其運用於第一部份研究中製作的直接硼氫化鈉燃料電池系統中。
實驗結果顯示,增加流道分佈、提升燃料流率及降低鎖付扭力均對於性能提升有明顯的幫助,而增加NaBH4濃度雖提高反應活性,同時伴隨著水解反應使氫氣增加,致使性能下降。此外改善無閥阻抗微泵材料有助於提升流率,空載下最大可達到715ml/min。並在實際燃料電池流阻作用下,實驗得到流率為30ml/min,電池最佳性能為26 W、最大電流值51A。

The main purposes of this study are to investigate the effects of the operation conditions on the performance of a mini-Direct Sodium Borohydride – Hydrogen Peroxide Fuel Cell (DBFC) with a valveless impedance mini pump.
Firstly, the mini-fuel cell used in the experiments is self-designed and assembled. The effects of the flow field distribution, the fuel flow rate on the anode side, clamping force with bolts, the concentration of the fuel NaBH4 on the performance of this DBFC are investigated.
Secondly, this research focuses on the making and testing of a cam-driven circular valveless impedance pump and the integration of this pump with the DBFC tested in the first part.
The experimental results show that the performance of the fuel cell is improved apparently when increasing the flow field distribution and the flow rate of the fuel, and decreasing the clamping force. Increasing the borohydride concentration increases the anode reaction rate and electrochemical kinetics. However, the high borohydride concentration decreases the performance of fuel cell, owing to the increase of the hydrogen by hydrolysis reaction at same time.

In addition, the flow rate achieves a maximum value of 715ml/min for the self-made impedance pump under no load. When connected to the fuel cell, the flow rate reduces to 30 ml/min due to the flow resistance of the fuel cell. Nevertheless, the maximum power and current of 26 W and 51 A are observed, respectively, with the current combination of the home-made DBFC and the valveless impedance pump.

中文摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第1章 序論 - 1 -
§1.1 前言 - 1 -
§1.2 燃料電池種類 - 4 -
§1.3 直接硼氫化鈉 / 過氧化氫燃料電池的基本構造及工作原理 - 6 -
§1.4 文獻回顧 - 13 -
§1.4.1 DBFC製作與操作參數相關實驗的文獻 - 13 -
§1.4.2 無閥阻抗泵浦設計之文獻 - 16 -
§1.5 研究動機與目的 - 20 -
第2章 研究方法 - 21 -
§2.1直接硼氫化鈉/過氧化氫燃料電池實驗設計 - 21 -
§2.1.1 膜電極組(MEA) - 22 -
§2.1.2 襯套(Gasket) - 25 -
§2.1.3 雙極板(Bipolar Plate) - 26 -
§2.1.4 集電板(Current Collector) - 29 -
§2.1.5 絕緣片(Insulated Plate) - 30 -
§2.1.6 端板(End Plate) - 30 -
§2.2 實驗架構與設備 - 32 -
§2.2.1 燃料電池測試系統 - 33 -
§2.2.2 溫控系統 - 34 -
§2.2.3 燃料儲存設備 - 37 -
§2.2.4 幫浦 - 38 -
§2.2.4.1 蠕動式幫浦 - 38 -
§2.2.4.2 無閥門阻抗式微泵設計 - 39 -
§2.3 實驗步驟與操作條件設定 - 42 -
§2.3.1 實驗步驟 - 42 -
§2.3.2 操作條件設定 - 43 -
§2.3.2.1 基本實驗條件設定 - 44 -
§2.3.2.2 流道設計對電池性能影響性 - 45 -
§2.3.2.3 燃料流量實驗 - 46 -
§2.3.2.4 鎖付扭力之電池性能影響性 - 48 -
§2.3.2.5 陽極端燃料濃度實驗 - 48 -
§2.3.2.6 微型管道之腐蝕性實驗 - 49 -
§2.3.2.7 微型馬達驅動之流率量測 - 49 -
§2.3.2.8 改變陽極端驅動幫浦之電池性能實驗 - 50 -
§2.3.2.9 改變陰陽極端驅動幫浦之電池性能實驗 - 52 -
第3章 結果與討論 - 54 -
§3.1 DBFC操作參數對性能之影響 - 54 -
§3.1.1 流道設計對電池性能的影響 - 54 -
§3.1.2 供給燃料之流率 - 56 -
§3.1.3 鎖付扭力對電池性能影響性 - 58 -
§3.1.4 陽極端燃料濃度 - 62 -
§3.2 無閥阻抗式微泵操作參數對性能之影響 - 66 -
§3.2.1 微型管道之腐蝕性實驗 - 66 -
§3.2.2 微型馬達驅動之流率量測 - 71 -
§3.3 幫浦種類對電池性能差異性 - 72 -
§3.3.1 改變陽極端驅動幫浦之電池性能實驗 - 72 -
§3.3.2 改變陰陽極端驅動幫浦之電池性能實驗 - 75 -
第4章 結論 - 77 -
參考文獻 - 79 -
附錄 - 83 -

[1] 陳永祥、張裕昌、李雲嫦、趙奕姼,化學中的清流:對環境友 善綠 色化學,科學發展月刊,第396期,pp.56-61,2005。
[2] 黃鎮江,“綠色能源,初版,全華圖書股份有限公司,2008。
[3] 黃鎮江,“燃料電池,第二版,全華科技圖書股份有限公司,2007。
[4] N. Luo, G.H. Miley, J. Mather, R. Burton, G. Hawkins, E. Byrd, F. Holcomb, J. Rusek,“Engineering of the Bipolar Stack of a Direct NaBH4 Fuel Cell, Journal of Power Sources 185 (2008) 356–362.
[5] G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, D. Carroll, “Direct NaBH4/H2O2 Fuel Cells, Journal of Power Sources 165 (2007) 509–516.
[6] L. Gu, N. Luo, G.H. Miley, “Cathode Electrocatalyst Selection and Deposition for a Direct Borohydride/Hydrogen Peroxide Fuel Cell, Journal of Power Sources 173 (2007) 77–85.
[7] D.J. Brodrecht, J.J. Rusek, “Aluminum–Hydrogen Peroxide Fuel-Cell Studies, Applied Energy 74 (2003)113–124.
[8] B.H. Liu, Z.P. Li, S. Suda, “Development of High- Portable Applications, Journal of Power Sources 175 (2008) 226-231.
[9] H. Cheng, K. Scott, “Influence of Operation Conditions on Direct Borohydride Fuel Cell Performance, Journal of Power Sources 160 (2006) 407–412.
[10]C.Kim,K.J.Kim,M.Y. Ha, “Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications, Journal of Power Sources 180(2008) 114–121.
[11]H.Cheng, K. Scott, K. Lovell, “Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells, Fuel Cells 5 (2006) 367–375.
[12]N.Luo,G.H.Miley,K.J.Kim,R.Burton,X.Huang,“NaBH4/H2O2 Fuel Cells for Air Independent Power Systems, Journal of Power Sources 185 (2008) 685–690.
[13] J. Ma, Y. Sahai, R.G. Buchheit, “Direct Borohydride Fuel Cell using Ni-based Composite Anodes, Journal of Power Sources 195 (2010) 4709-4713.
[14] W. Haijun, W. Cheng, L. Zhixiang, M. Zongqiang, “Influence of Operation Conditions on Direct NaBH4/H2O2 Fuel Cell Performance, Journal of Hydrogen Energy 35(2010) 2648-2651.
[15] S. Lux, L. Gu, G. Kopec, R. Bernas, G. Miley, “Water Management Issues for Direct Borohydride/Peroxide Fuel Cells, Journal of Fuel Cell Science and Technology 7(2010) 24501-24505.
[16] B.H. Liu, S. Suda, “Influences of Fuel Crossover on Cathode Performance in a Micro Borohydride Fuel Cell, Journal of Power Sources 164 (2007) 100–104.
[17] 陳嘉弘, “直接硼氫化鈉-過氧化氫燃料電池之研究 ,國立成功大學航空暨太空工程學系碩士論文,民國一百年。
[18] 葉士榮, “無閥阻抗式微泵應用於個人電腦冷卻系統之研究 , 國立成功大學航空暨太空工程學系碩士論文,民國九十九年。
[19] G. Liebau, “Arterielle Pulsation und venöse Repulsation, Z. Gesamte Exp. Med. 123(1954) 71 .
[20] G. Liebau, “Über ein Ventilloses Pumpprinzip, Naturwiss., 41(1954) 327.
[21] G. Liebau, “Herzpulsation und Blutbewegung, Z. Gesamte Exp. Med., 125(1955) 482.
[22] G. Liebau, “Prinzipien Kombinierter Ventilloser Pumpen, abgeleitet vom Menschlichen Blutkreislauf, Naturwiss., 42(1955) 339 .
[23] G. Liebau, “Die Strömungsprinzipien des Herzens, Z. Kreislaufforsch., 44(1955) 677.
[24] C. Babbs, & E. Jung, “Valveless Pumping Explained in Terms of Reflected Pressure Waves, 2002.
[25] D. Rinderknecht, A. I. Hickerson, M. Gharib, “A Valveless Micro Impedance Pump Driven by Electromagnetic Actuation, Journal of Micromechanics and Microengineering,15(2005) 861.
[26] C. Y. Wen, C. H. Cheng, C. N. Jian, T. A. Nguyen, C. Y. Hsu, Y. R. Su, “A Valveless Micro Impedance Pump Driven by PZT Actuation, Material Science Forum,505(2005)127.
[27] A. I. Hickerson, “An Experimental Analysis of the Characteristic Behaciors of An Impedance Pump, California Institute of Technology,Pasadena, 2005.
[28] 許智崵, “對稱型無閥阻抗泵浦之實驗研究 ,大葉大學機械工程學系碩士論文,民國九十五年。
[29] D.H. Doan , “二維無閥式阻抗幫浦的流體力學研究 ,大葉大學機械與自動化工程學系碩士論文,民國九十六年。
[30] T. A. Nguyen, “無閥式組抗幫浦的流體力學研究 ,大葉大學車輛工程研究所,民國九十四年。
[31] K. Wang, J. Lu, L. Zhuang, “A Mechanistic Study of Borohydride Anodic Oxidation, Journal of Catalysis (2010)
[32] http://www.arbin.com/
[33] J. Zhang, Y. Zheng, J.P. Gore, I. Mudawar, T.S. Fisher, “1 kWe Sodium Borohydride Hydrogen Generation System Part II: Reactor Modeling, Journal of Power Sources 170 (2007) 150–159.
[34] Y. Kojima, K.I. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, “Development of 10 kW-Scale Hydrogen Generator using Chemical Hydride, Journal of Power Sources 125 (2004) 22–26.
[35] W. R. Chang, J. J. Hwang, F. B. Weng, S. H. Chan,“Effect of clamping pressure on the performance of a PEM fuel cell, Journal of Power Sources 166(2007) 149- 154.
[36] S. Escribano, J. F. Blachot, J. Etheve, A. Morin, R. Mosdale, “Characterization of PEMFCs gas diffusion layers properties, J. Power Source 156 (2006) 8-13.
[37] W. K. Lee, C. H. Ho, J. W. Van Zee, M. Murthy,“The effects of compression and gas diffusion layers on the performance of a PEM fuel cell, Journal of Power Sources84(1999) 45-51.
[38] Z.P. Li, B.H. Liu, J.K. Zhu, S. Suda, “Depression of Hydrogen Evolution During Operation of a Direct Borohydride Fuel Cell, Journal of Power Sources 163 (2006) 555–559.
[39] J. Ma, N.A. Choudhury, Y. Sahai, “A Comprehensive Review of Direct Borohydride Fuel Cells, Journal of Renewable and Sustainable Energy Reviews 14 (2010) 183–199.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top