跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋采勵
研究生(外文):Tsai-LiSung
論文名稱:以多元醇法製備單晶黃銅礦相CIBS奈米材料及其光電特性分析
論文名稱(外文):Synthesis of Chalcopyrite CIBS Nanocrystals by Polyol Route and their Characterization and Optical Electrical Properties Measurements
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:黃銅礦銅銦硼硫太陽能電池多元醇奈米粒子
外文關鍵詞:chalcopyriteCIBSsolar cellpolyolnanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用多元醇法(polyol route)製備出具有單一黃銅礦晶相結構的CuIn1-xBxS2(CIBS)奈米粒子,x介於0.1~0.5之間。CuIn1-xBxS2奈米粉體使用氯化銅(CuCl2)、氯化銦(InCl3)、氧化硼(B2O3)及硫元素(S)藥品製備。合成出的奈米粒子其晶粒大小約介於20~85nm之間。
經由X光晶體繞射儀(X-Ray diffraction)、拉曼光譜儀(Raman spectroscopy)等其他分析來確認材料的性質,並且透過調整CIBS奈米粒子中的氯化銦與氧化硼的成分比,控制銦與硼的比例及不同溫度等參數下,形成最佳的CIBS粉體。
In this study, we report the synthesis in solution of phase pure nanocrystals of chalcopyrite CuIn1-xBxS2 with x ranged from 0.1~0.5. CuIn1-xBxS2 nanocrystals were synthesized from copper chlorides, indium chlorides, boric anhydride and sulfur. The nanocrystals ranging from 20 to 85 nm in diameter were synthesized in solution.
The characteristics of the material could be confirmed by X-Ray diffraction, Raman spectroscopy and the other analysis methods, and the more good CIBS powder could be made by controlling the reaction temperatures and the In-B ratio from the In reactant and the B reactant, respectively.
目錄
摘 要................................................... I
Abstract............................................... Ⅱ
誌謝.................................................... Ⅲ
目錄.................................................... Ⅳ
表目錄.................................................. Ⅵ
圖目錄.................................................. Ⅶ
第一章 緒論.............................................. 1
1.1研究背景.............................................. 1
1.2研究動機與目的......................................... 3
第二章 文獻回顧與理論說明.................................. 5
2.1由溶液製備的奈米粒子................................... 5
2.1.1 水熱/溶熱法(Hydrothermal / Solvothermal method)... 5
2.1.2 沉澱法(Precipitation method)..................... 6
2.1.3 溶膠法(Sol method)............................... 8
2.2成長CIBS奈米粒子的方法................................. 8
2.2.1濺鍍法製備CIBS奈米粒子............................... 8
2.2.2溶熱法製備CIBS奈米粒子............................... 9
2.3由不同溶液方法製備Ⅰ-Ⅲ-Ⅵ族化合物奈米粒子.................. 10
2.3.1沉澱法製備Ⅰ-Ⅲ-Ⅵ族化合物奈米粒子....................... 10
2.3.2溶膠法製備Ⅰ-Ⅲ-Ⅵ族化合物奈米粒子....................... 11
2.4 Ⅰ-Ⅲ-Ⅵ族化合物材料特性................................ 12
2.4.1 CuInS2材料性質..................................... 12
2.4.2 Cu(In,Ga)Se/S2材料特性............................. 15
2.4.3 Cu(In,B)S2材料性質................................. 15
第三章 實驗方法步驟與實驗設備............................... 17
3.1 實驗藥品與儀器........................................ 17
3.1.1 實驗藥品........................................... 17
3.1.2 一般實驗儀器....................................... 18
3.1.3 X光粉末繞射儀(X-ray powder diffractometer;XRD)... 19
3.1.4 穿透式電子顯微鏡(Transmission electron microscope;TEM)........................................... 20
3.1.5 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis;ESCA)........................................ 22
3.1.6 霍爾效應量測(Hall Measurement).................... 23
3.1.7顯微拉曼光譜儀(Microscopes Raman Spectrometer)..... 23
3.1.8螢光光譜儀(Photoluminescence;PL).................. 24
3.2 CuInBS2奈米粒子的製備與分析........................... 25
3.2.1 合成CIBS奈米粒子................................... 25
3.2.2 實驗流程........................................... 26
3.3 改變In:B比例........................................ 27
3.4 CuInBS2薄膜之製備.................................... 27
3.4.1 基板清洗........................................... 28
3.4.2 薄膜塗佈........................................... 29
3.4.3 薄膜燒結........................................... 29
第四章 實驗結果與討論..................................... 31
4.1合成CIBS奈米粉末...................................... 31
4.1.1 CIBS奈米粉末結構分析(XRD)......................... 31
4.1.2 CIBS奈米粉末形態分析(TEM)......................... 34
4.1.3 調整In/B含量比例(EDS)............................. 35
4.2 CIBS薄膜吸收層探討.................................... 36
4.2.1 CIBS薄膜化學分析(ESCA)............................ 36
4.2.2 CIBS薄膜電性分析(霍爾)............................ 38
4.2.3 CIBS薄膜拉曼分析(Raman)........................... 40
4.2.4 CIBS薄膜光學分析(PL).............................. 42
第五章 結論.............................................. 44
參考文獻................................................. 46


表目錄
表1-1 Cu(In,Ga)Se2之最高效率值及相對應的I-V、fill factor值.. 55
表2-1 Raman光譜模式(modes)特徵峰整理...................... 55
表2-2 CuInS2與其他晶體之晶體結構、Bravais晶體、空間群及晶格常數之比較...................................................... 55
表2-3 Cu2S-In2S3系統中各種化合物之轉換溫度................. 56
表4-1 CIS2奈米晶體之JCPDS#270-159之主要繞射鋒.............. 56
表4-2 Cu(In1-xBx)S2在x = 0~0.5晶格常數c/2a之比較.......... 56
表4-3 Cu(In1-xBx)S2在x = 0.1~0.5其TEM影像圖與Scherrer equation所求得的奈米粉體粒徑大小................................... 57
表4-4 EDS分析並以Cu作為參照基準之CIBS2奈米粒子相對原子比...... 57
表4-5 ESCA分析並以Cu作為參照基準之CIBS2相對原子成分比..........57
表4-6 Cu(In1-xBx)S2薄膜之霍爾量測結果..................... 58
表4-7 Cu(In1-xBx)S2薄膜之ESCA成分分析..................... 58


圖目錄
圖 1-1 Ⅰ-Ⅲ-Ⅵ2族化合物的可能組成.................................................................... 59
圖 1-2 各類太陽能電池吸收材料對於各波長之吸收系數..................................... 59
圖 2-1 (a) diamond Si (b) zincblende ZnS (c) chalcopyrite CuInS2
(d) CuAu ordered CuInS2 單位晶包(unit cell)結構圖.................................. 60
圖 2-2 Cu2S-In2S3之組成相圖................................................................................... 61
圖 2-3 Cu-In-S三元化合物化學組成缺陷概略圖................................................... 61
圖 2-4 黃銅礦結構CuYS2之能隙值作為Y原子量的函數,其中Y=B、Al、Ga、In.............................................................................................................. 62
圖 3-1 晶體繞射X光時,布拉格方程式之幾何關係................................................ 62
圖 3-2 實驗裝置示意圖............................................................................................. 63
圖 3-3 合成CIBS奈米粒子流程(多元醇法) ........................................................... 64
圖 3-4 CIBS材料與光電分析................................................................................... 65
圖 4-1 合成CuIn0.8B0.2S2奈米粒子XRD圖譜,反應時間及溫度分別為(b) 6hr、280oC (c) 5hr、320oC (d) 6hr、320oC (e) 7hr、320oC(a) JCPDS#270-159........................................................................................ 66
圖 4-2 黃銅礦CIS2奈米晶體之JCPDS#270-159..................................................... 66
圖 4-3 改變x比例所得Cu(In1-xBx)S2奈米粒子的XRD圖(a) x = 0.1 (b) x = 0.2 (c) x = 0.3 (d) x = 0.4 (e) x = 0.5................................. 67
圖 4-4 Cu(In1-xBx)S2奈米粒子XRD圖之(112)主繞射鋒(a) x = 0.1 (b) x = 0.2 (c) x = 0.3 (d) x = 0.4 (e) x = 0.5................................. 67
圖 4-5 Cu(In1-xBx)S2之晶格常數a、c與x成分比關係圖......................................... 68
圖 4-6 Cu(In1-xBx)S2之單位晶格體積與x成分比關係圖.................................... 69
圖 4-7 Cu(In0.8B0.2)S2奈米粒子之TEM影像及電子繞射圖(a)明視野圖 (b)圖a之放大明視野圖(c) CuInBS2之奈米SAED圖譜(d)細小入射電子束集中於單一晶粒上之繞射圖譜................................... 70
圖 4-8 改變合成參數之Cu(In0.8B0.2)S2奈米粒子之TEM影像圖(a)時間6hr、溫度280℃ (b)時間5hr、溫度320℃ (c)時間6hr、溫度320℃ (d)時間7hr、溫度320℃...................................... 71
圖 4-9 Cu(In0.9B0.1)S2奈米粒子之TEM影像圖..................................................... 72
圖 4-10 Cu(In0.8B0.2)S2奈米粒子之TEM影像圖..................................................... 73
圖 4-11 Cu(In0.7B0.3)S2奈米粒子之TEM影像圖..................................................... 74
圖 4-12 Cu(In0.6B0.4)S2奈米粒子之TEM影像圖..................................................... 75
圖 4-13 Cu(In0.5B0.5)S2奈米粒子之TEM影像圖..................................................... 76
圖 4-14 CIBS2薄膜的ESCA分析光譜圖 (a) Cu 2p (b) In 3d (c) B 1s (d) S 2p..... 77
圖 4-15 CIBS2薄膜的ESCA分析光譜圖 (a) C 1s (b) O 1s.................................... 77
圖 4-16 Cu(In1-xBx)S2在成分x = 0.1~0.5退火前後之拉曼圖譜.............................. 78
圖 4-17 Cu(In1-xBx)S2退火450℃、30分鐘在A1-mode之拉曼圖譜........................ 79
圖 4-18 Cu(In1-xBx)S2 film在不同x = [B]/[In+B]的Raman Shift............................ 79
圖 4-19 不同成分CIBS奈米粒子燒結成膜面之PL圖譜
(a) x = 0.1 (b) x = 0.2 (c) x = 0.3 (d) x = 0.4 (e) x = 0.5............................... 80
圖 4-20 不同成分CIBS之能隙比較圖 (a)PL值 (b)實際值 (c)理論值................ 80

[1]D. Lidgate, “Green energy, Engineering science and eduction joural, 1, p.221-227. (1992)
[2]Michael Grätzel, “Photoelectrochemical cells, Nature, 414, p338-344. (2001)
[3]K. Zweibel, “Harnessing solar Power: The photovoltaics challenge, Plenum : New York, p.235-253. (1990)
[4]邱秋燕, 廖曰淳, 郭豐綱, “低成本銅銦鎵硒(CIGS)太陽電池技術發展 工業材料, 276, p.58-68. (2009)
[5]A.S. Kindyak, V.V. Kindyak, V.F. Gremenok, “Energy-gap variations in thin laser-deposited Cu(In,Ga)Se2 films, Materials Letters., 28, p.273-275. (1996)
[6]Arturo Morales-Acevedo, “Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells, Solar Energy Materials & Solar cells., 93, P.41-44. (2009)
[7]M. A. Contreras, M. J. Romero, R. Noufi, “Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells, Thin Solid Films., 511-512, p.51-54. (2006)
[8]Stephen J. Fonash, “Solar Cell Device Physics, Academic Press., p.78. (1981)
[9]M.A.Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egass, and R. Noufi,“SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1−xGax)Se2 Solar Cells, Prog. Photovolt: Res. Appl., 13, p.209-216. (2005)
[10]Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla,“New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovolt: Res. Appl., 19, p.894-897. (2011)
[11]J.H. Yun, R.B.V. Chalapathy, J.C.Lee, J. Song, and K.H. Yoon, “Formation of CuIn1-xAlxSe2 Thin Films by Selenization of Metallic Precursors in Se Vapor, Solid State Phenomena, 124-126, p.975-978. (2007)
[12]徐如人, 龐文琴, “無機合成與製備化學 五南圖書出版股份有限公司, p.733-742. (2004)
[13]林琬蓉, “FePt合金粒子之製備與性質研究 國立成功大學材料科學研究所碩士論文, p.5-8. (2007)
[14]C. B. Murray, D. J. Noms, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., 115, p.8706-8715. (1993)
[15]利宗倫, “以溶熱法合成Ⅰ-Ⅲ-Ⅵ 族CuInS2奈米 粒子及其特性探討 國立成功大學化學工程研究所碩士論文, p.12-13. (2008)
[16]L. S. Li, N. Pradhan, Y. Wang, and X. Peng, “High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors, Nano Letters., 4, p.2261-2264. (2004)
[17]M. A. Hines, G. S. Philippe, “Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B, 102, p. 3655–3657. (1998)
[18]L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals, Nano Letters, 1, p.333-337. (2001)
[19]W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater, 15, p.2854-2860. (2003)
[20]W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers, Angew. Chem. Int. Ed, 41, p.2368-2371. (2002)
[21]Z. A. Peng and X. Peng, “Nearly monodisperse and shape - controlled CdSe nanocrystals via alternative routes: nucleation and growth, J. Am. Chem. Soc, 124, p.3343-3353. (2002).
[22]W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals, Chem. Mater, 15, p. 4300-4308. (2003)
[23]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, “Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes, J. Phys. Chem. B, 106, p. 7177-7185. (2002)
[24]M. Shim, G. S. Philippe, “Organic-capped ZnO nanocrystals: synthesis and n-type character, J. Am. Chem. Soc., 123, p.11651-11654. (2001)
[25]Dr. Rodney J. Soukup, Natale J. Ianno, Chad A. Kamler , Jiři Olejníček, Scott A. Darveau, and Christopher L. Exstrom, “Thin Films of CuInxB1-xSe2 as Absorbers for CIBS Solar Cells, ECS Meet. Abstr., MA2009-02, p.761. (2009)
[26]F. O. Adurodija, et. al., “Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container, Thin Solid Films, 338, p.13-19. (1999)
[27]R. J. Soukup, et. al., “Reaction Pathway Insights into the Solvothermal Preparation of Culn1-xGaxSe2 Nanocrystalline Materials, Proc. 33 rd IEEE Photovoltaic Specialists Conference, 978-1-4244-1641-7/08, paper 191. (2008)
[28]M. Marudachalam, H. Hichri, RW Birkmire, and JM Schultz, “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere, Appl. Phys. Lett., 67, p.3978-3980. (1995)
[29]Lin-Jer Chen, Jiunn-Der Liao, Yu-Ju Chuang, and Yaw-Shyan Fu, “Synthesis and Characterization of Cu(InxB1-x)Se2 Nanocrystals for Low-Cost Thin Film Photovoltaics, J. Am. Chem. Soc., 133, p.3704-3707. (2011)
[30]Y. G. Chun, K. H. Kim, K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route, Thin Solid Films., 480-481, p.46-49. (2005)
[31]K. H. Kim, Y. G. Chun, M. Kaiser, B. O. Park, K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 nanoparticles by solvothermal route, Materials Science., 449-452, p.273-276. (2004)
[32]C. H. Chang, J. M. Ting, “Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process, Thin Solid Films., 517, p.4174-4178. (2009)
[33]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks for printable photovoltaics, J. AM. Chem. SOC, 130, p.16770-16777. (2008)
[34]H. Grisaru, O. Palchik, A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles, Inorg. Chem., 42, p.7148-7155. (2003)
[35]J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, “Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles, Chem. Mater., 20, p.6906-6910. (2008)
[36]S. Ahn, K. Kim, Y. Chun, K. Yoon, “Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process, Thin Solid Films., 515, p.4036-4040. (2007)
[37]Yunbin He, “CuInS2 Thin Films for Photovoltaic:RF Reactive Sputter Deposition and Characterization, Justus-Liebig-Universität Gießen Dissertation, p.1-119. (2003)
[38]S.-H.Wei and A. Zunger, “Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends, Phys. Rev. B., 60, p.5404-5411. (1999)
[39]S.H. Wei, L.G. Ferreira, and A. Zunger, “First-principles calculation of the order-disorder transition in chalcopyrite semiconductors, Phys.Rev.B., 45, p.2533-2536. (1992)
[40]Wei S.H., Zhang S.B., and Zunger A., “Band structure and stability of zinc-blende-based semiconductor polytypes, Phys.Rev.B, 59, R2478-2481 (1999)
[41]Alvarez-Garcia J, Pérez-Rodríguez A, Barcones B., Romano-Rodríguez A and Morante J.R., Scheer R., Janotti A. and Wei S.H., “Polymorphism in CuInS2 epilayers: origin of additional Raman modes, Appl. Phys. Lett., 80, p.562-564. (2002)
[42]J.J.M. Binsma, L.J. Giling, J. Bloem, “Phase relations in the system Cu2S-In2S3, Journal of Crystal Growth, 50, p.429-436. (1980)
[43]Krunksa M, Bijakina O, Varema T, Mikli V, Mellikov E, “Structural and optical properties of sprayed CuInS2 films, Thin Solid Films, 338, p.125-130. (1999)
[44]S.C. Abrahams, J.L. Bernstein, “Piezoeletric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion in AⅠBⅢCⅥ2 and AⅡBⅣCⅤ2 type chalcopyrites, J. Chem. Phys., 59, p.5415-5422. (1973)
[45]A. Rockett and R. W. Birkmire, “CuInSe2 for photovoltaic applications, J. Appl. Phys., 70, p.81-97. (1991)
[46]H.J. Lewerenz, “Development of copperindiumdisulfide into a solar material, Sol. Energy Mater. Sol. Cells, 83, p.395-407. (2004)
[47]F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, “Intrinsic defect states in CuInSe2 single crystals, Solar Cells, 27, p.237-245. (1989)
[48]A. Slaoui and R. T. Collins, “Advanced inorganic materials for photovoltaics, MRS Bull., 32, p.211-218. (2007)
[49]P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafarman, “CuIn1-xAlxSe2 thin films and solar cells, J. Appl. Phys., 91, p.10153-10156. (2002)
[50]I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Progr. Photovolt.: Res. Appl., 16, p.235-239. (2008)
[51]S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire and W. N. Shafarman, “High-efficiency solar cells based on Cu(InAl)Se2 thin films, Appl. Phys. Lett., 81, p.1350-1352. (2002)
[52]S.H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys, J. Appl. Phys., 78, p.3846-3856. (1995)
[53]N.J.Ianno, R.J. Soukup, T. Santero, C. Kamler, J. Huguenin-Love, S.A. Darveau, J. Olejnicek, and C. Exstrom, “Copper-Indium-Boron-Diselenide Absorber Materials, Mater. Res. Soc. Symp. Proc., 1012, Y03-21-Y03-26. (2007)
[54]林麗娟, “X光繞射原理及其應用工業材料, 86, p.100-109. (1994)
[55]S. Ahn, C. Kim, Y. Chun, J. Yun, J. Lee, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles, Solar Energy Materials & Solar Cells., 91, p.1836-1841. (2007)
[56]S. Ahn, K. H. Kim, J. H. Yun, K. H. Yoon, “Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles, Journal of Applied Physics., 105, p.113533-113533-7. (2009)
[57]Q. Guo, G. M. Ford, H. W. Hillhouse and R. Agrawal, “Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance, Nano Lett., 9(8), p.3060-3065. (2009)
[58]D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu and Y. Lu, “Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps, Chem. Mater., 21, p.2489-2493. (2009)
[59]Gebicki W, Igalson M, Zajac W and Trykozko R, “Growth and characterisation of CuAlxInl-xSe2 mixed crystals, J. Phys. D: Appl. Phys., 23, p.964-965. (1990)
[60]Bodnar I. V., Tsyrelchuk I. N. and Victorov I .A., “Preparation and analysis of the CuAlxInl-xSe2 solid solutions, J. Mater. Sci. Lett., 13, p.762-764. (1994)
[61]B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices, Crit. Rev. Solid State Mat. Sci., 27(2), p.73-113. (2002)
[62]B. D. Cullity, “Elements of Xray Diffraction, Addison Wesley, p284. (1978)
[63]J. Llanos, A. Buljan, C. Mujica and T. J. Ramirez, “Electron transfer and electronic structure of KCuFeS2, J. Alloys Compd., 234, p. 40-42. (1996)
[64]E. P. Domashevskayaa, V. V. Gorbachev, V. A. Terekhova, V. M. Kashkarova, E. V. Panfilova and A. V. Shchukarev, “XPS and XES emission investigations of d–p resonance in some copper chalcogenides, J. Electron Spectrosc. Relat. Phenom., 114-116, p. 901-908. (2001)
[65]T. T. Xu, J. G. Zheng, N. Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, and R. S. Ruoff, “Crystalline Boron Nanoribbons: Synthesis and Characterization, Nano Lett., 4 (5), p.963-968. (2004)
[66]D. Q. Yang and E. Sacher, “Core/Shell Formation of Gold Nanoparticles Induced on Exposure to N, N-Dimethylformamide: Chemical and Morphological Changes, J. Phys. Chem. C, 111, p. 14320-14326. (2007)
[67]L.L. kazmerski, “Photovoltaics: A review of cell and module technologies, Renewable and sustainable energy review, 1, p.71-171. (1997)
[68]I.V. Bodnar, L.V. Golubev, V.G. Plotnichenko, E.A. Smolyaninova, “Raman Scattering in CuGaSe2, Phys. Status Solidi B, 105, K111- K114. (1981)
[69]C. Guillen, J. Herrero, M.t. Gutierrez, F. Briones, “Structure, morphplogy and optical properties of CuInS2 thin films prepared by modulated fiux deposition, Thin Solid Films, 480, p.19-23. (2005)
[70]B. Barcones, A. Pérez-Rodríguez, L. Calvo-Barrio, A. Romoano-Rodríguez, J.R. Morante, E.Rudigier, I.Luck, J.Djordjevic, R. Scheer, “In situ and ex situ characterization of thermally induced crystallization of CuInS2 thin films for solar cell, Thin Solid Films, 408-481, p.362-366. (2005)
[71]J. Álvarez-García, J. Marcos-Ruzafa, A. Pérez-Rodríguez , A. Romano-Rodríguez, J.R. Morante , R. Scheer, “MicroRaman scattering from polycrystalline CuInS2 films, Thin Solid Films, 361-362, p.208-212. (2000)
[72]D. Papadimitriou, N. Esser, and C. Xue, “Structural properties of chalcopyrite thin films studied by Raman spectroscopy, phys. stat. sol. (b), 242, p.2633-2643. (2005)
[73]J. Olejníček , C.A. Kamler , A. Mirasano , A.L. Martinez-Skinner , M.A. Ingersoll , C.L. Exstrom ,S.A. Darveau , J.L. Huguenin-Love , M. Diaz , N.J. Ianno , R.J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materialsinvolving an open-air solvothermal reaction, Solar Energy Materials and Solar Cells, 94, p.8-11. (2010)
[74]S. Theodoropoulou, D. Papadimitriou, N. Rega, S. Siebentritt, M.Ch. Lux-Steiner, “Raman and photoreflectance study of CuIn1-xGaxSe2 epitaxial layers, Thin Solid Films, 511-512, p.690-694. (2006)
[75]S. Roy, P. Guha, S.N. Kundu, H. Hanzawb, S. Chaudhuri, A.K. Pal, “Characterization of Cu(In,Ga)Se2 films by Raman scattering, Mater. Chem. Phys., 73, p.24-30. (2002)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top