跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾胤豪
研究生(外文):Yin-HaoTseng
論文名稱:應用晶格波茲曼法於管道內具擺動葉片之對流熱傳分析
論文名稱(外文):Application of Lattice Boltzmann Method to Convective Heat Transfer in the channel with an Oscillating Blade
指導教授:陳介力陳介力引用關係
指導教授(外文):Chieh-Li Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:晶格波茲曼法渠道流對流熱傳擺動葉片
外文關鍵詞:lattice Boltzmann methodchannel flowconvective heat transferswing blade
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以晶格波茲曼法模擬擺動葉片對渠道內加熱圓柱之流場與熱傳特性的影響,並探討改變流場入口雷諾數以及不同之葉片設計參數對渠道內加熱圓柱之熱傳特性的影響。並適當的設定入口的均勻流速度,以確保流場的適用性及避免太大的壓縮效應。研究結果顯示流場受到葉片進行往複式的振盪運動牽引的效應,使管道內的流體呈現上下振盪的現象,引導流體向高溫加熱圓柱壁面衝擊,擾亂管道內的流場以及溫度場,產生較佳的熱傳增益。
流場的擾動可經由改變擺動葉片設計參數而產生強弱之分,本文考慮了五種不同的設計參數,分別是葉片擺動角度、葉片長寬比、葉片與加熱圓柱之間距離的大小以及葉片擺動頻率,最後考慮了擺動葉片在流場中不同位置其增加的流場擾動對熱傳效果的影響。結果顯示擺動角度、葉片長寬比及擺動頻率愈大,對增強對流熱傳之效果愈好,而葉片與加熱圓柱之間距離和擺動葉片在流場中不同位置的選擇應依依雷諾數與擺動葉片參數不同而選擇最佳值。

In this study, the lattice Boltzmann method is applied to simulate the effect of flow field and convection heat transfer of the heating cylinder in the channel with an oscillating blade. The effect of blade parameters and the Reynolds number of inlet flow to convective heat transfer is studied.
The inlet velocity is assigned appropriately to ensure a reasonable adaptation of fluid field and to avoid un-physical compressible effect. The results of numerical simulation demonstrate that the oscillating blade induces a force oscillation to the flow and thermal fields in the channel flow, such that the heat transfer rate could be enhanced for the heating cylinder.
Five blade design parameters with respect to heating cylinder is considered, namely, the swing angle, the blade aspect ratio, the distance and relative location to heating cylinder and operation frequency. Results show that a larger swing angle, blade aspect ratio and swing frequency will lead to a better the enhancement of convective heat transfer. However, a good choice of distance and location of the blade can only be determined according to the inlet flow Reynolds number and the selected blade parameters.

摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號表 IX
第一章 緒論 1
1.1 晶格波茲曼法簡介 1
1.2 晶格波茲曼法文獻回顧 3
1.3 研究動機與目的 6
1.4 本文架構 8
第二章 晶格波茲曼法理論與基本模型 9
2.1 晶格波茲曼法理論 9
2.2 晶格波茲曼法D2Q9模型與巨觀方程式 10
2.3 晶格波茲曼法之熱模型 21
2.3.1 He之熱模型 21
2.3.2 Peng之熱模型 27
2.4 邊界格點判別法 29
第三章 邊界處理方法與程式驗證 35
3.1 速度與壓力邊界 35
3.2 曲面邊界 38
3.3 Peng之熱模型邊界 40
3.4 程式流程與驗證 41
3.4.1 程式流程 41
3.4.2 程式驗證 42
第四章 結果與討論 50
4.1 基本幾何模型與參數 50
4.2 擺動葉片對流場和溫度場之暫態特性分析 52
4.3 入口雷諾數對流場和溫度場之影響 53
4.4 不同葉片設計對流場和溫度場之影響 55
第五章 結論與未來展望 70
5.1 結論 70
5.2 建議與未來展望 71
參考文獻 73


Alexander, F. J., & Chen, S., & Stering, J. D., 1993, “Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, Vol. 47, pp. R2249-2252.

Bhatnagar, P. L., & Gross, E. P., & Krook, M., 1954, “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems, Phys. Rev., Vol. 94(3), pp. 511-525.

Bouzidi, M., & Firdaouss, M., & Lallemand, P. J., 2001, “Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids, Vol. 13(11), pp. 3452-3459.

Chen, Shiyi, & Martinez, Daniel, 1996, “On boundary condition in lattice Boltzmann methods, Phys. Fluids, Vol. 8(9), pp. 2527-2536.

Chen, Shiyi, & Doolen, Gary D., 1998, “Lattice Boltzmann model for fluid flows, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364.

Chen, C. K., & Chang, S. C., & Sun, S. Y., 2007, “Lattice Boltzmann Method Simulation of Channel Flow with Square Pillars inside by the Field Synergy Principle, CMES, vol.22(3), pp.203-215.

Chang, S. C., & Hsu, Y. S., & Chen, C. L., 2011, “Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm, J. CSME, Vol. 32(6), pp.523~531.

Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, 1993, “A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, Vol. 5(10), pp.2557-2562.

Guo, Zhaoli, & Zhao, T. S., 2002, “Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, Vol. 66, pp. 036304.

Higuera, F. J., & Jimenez, J., 1989, “Boltzmann approach to lattice gas simulations,Europhys. Lett., Vol. 9(7), pp. 663-668.

Higuera, F. J., & Succi, S., & Benzi, R., 1989, “Lattice gas dynamics with enhanced collisions, Europhys. Lett., Vol. 9(4), pp. 345-349.

He, Xiaoyi, & Luo, Li-Shi, 1997, “Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys., Vol. 88(3/4), pp. 927-944.

He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., 1998, “A novel thermal model for the lattice Boltzmann in incompressible limit, J. Comput. Phys., Vol.146, pp. 282-300.

Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, 1995, “A non-slip condition for lattice Boltzmann simulattion, Phys. Fluids, Vol. 7(12),pp. 2928-2930.

Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., 2002, “Application of lattice Boltzmann model to simulate microchannel flows, Physics of Fluids,Vol. 14(7), pp. 2299-2308.

Lallemand, P., & Luo, L. S., 2003, “Lattice Boltzmann method for moving boundaries, J. Comput. Phys., Vol.184, pp. 406-421.

McNamara, Guy R., & Zanetti, Gianluigi, 1988, “Use of the Boltzmann equation to simulate lattice-gas automata, Physical Review Letters, Vol. 61(20),pp. 2332-2335.

Mettu, S., & Verma, N., & R. P., Chhabra, 2006, “Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel, Heat Mass Transfer, Vol. 42,pp. 1037-1048.

Maier, R.S., & Bernard R.S., & Grunau, D.W., 1996, “Boundary conditions for the lattice Boltzmann method, Phys. Fluids, Vol. 8, 1788-1801.

Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., 1995, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method,Phys. Fluids, Vol. 7(1), pp. 203-209.

Peng, Y., & Shu, C., & Chew Y. T., 2003, “Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, Vol. 68, pp.026701.

Qian, Y. H., & d’Humieres, D., & Lallemand, P.,1992, “Lattice BGK models for Navier-Stokes equation, Europhy. Lett., Vol. 17(6), pp. 479-484.

Shan, Xiaowen, 1997, “Simulation of Rayleigh-Benard convection using a lattice Boltzmann method, Phys. Rev. E, Vol. 55, pp. 2780-2788.

Succi, S., & Vergassola, M., & Benzi, R. , 2001, “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics, Phys. Rev. A, Vol. 43(8), pp. 4521-4524.

Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation, J. Stat.Phys., Vol. 71, pp. 1171-1177, 1993.

Zou, Qisu, & He, Xiaoyi, 1997, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, Vol. 9(6), pp.1591-1598.

何雅玲,王勇,李慶,“格子Boltzmann方法的理論及應用,科學出版社,2011

郭照立,鄭楚光,“格子Boltzmann方法的原理及應用,科學出版社,2010

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top