跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林翰毅
研究生(外文):Han-YiLin
論文名稱:凹槽機構對超燃衝壓引擎流場之影響
論文名稱(外文):The Effects of Cavity Mechanism on theFlow Field in a Scramjet
指導教授:江滄柳
指導教授(外文):Tsung-Leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:超燃衝壓引擎數值模擬凹槽
外文關鍵詞:ScramjetNumerical SimulationCavity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
超燃衝壓引擎中有許多複雜的物理現象,包含紊流與震波之間的交互作用以及燃料與氧化劑在超音速條件下的注射、混合以及燃燒反應。為了克服後者的問題,許多學者提出以凹槽駐焰器來有效幫助燃料混合以及駐焰效果。本研究將以數值的方法對超音速凹槽流場進行研究與探討。本文第一部分先針對超音速凹槽冷流場進行二維數值模擬。為了能夠準確捕捉凹槽在超音速流場中的流體現象,紊流模式針對RNG k-ε、SST k-ω、Realizable k-ε三種模式並結合增強壁面處理法做出探討。結果顯示SST k-ω搭配增強壁面處理法計算得到之凹槽壁面壓力分佈與實驗文獻相當符合,證實此計算模型在超音速凹槽流場之可用性。第二部份針對超音速凹槽燃燒流場進行二維數值模擬,紊流模式使用SST k-ω模型搭配增強壁面處理法並搭配Flamelet化學燃燒模式結合氫氣與氧氣燃燒之32條方程式。在氫氣注入氮氣之流場與實驗值的比較結果中,本研究低估了後段壁面之壓力,推測是因為本研究使用二維之方法對三維燃燒室進行數值模擬,與實驗的真實操作條件不符,在超音速凹槽流場中,三維效應是不可忽視的。在氫氣從凹槽斜壁面上與主流空氣流向相反注入的超音速凹槽燃燒流場中,本研究探討三組不同當量比0.13、0.17、0.23。在燃燒室出口幾乎沒有氫氣存在,燃料幾乎消耗殆盡。隨著不同的燃料注入當量比,對於凹槽內部震波分佈以及燃料分佈情形也有明顯差異。從目前的結果中發現,凹槽機制在超燃衝壓引擎中能夠有效幫助燃料與空氣的混合以及燃燒。
The combustion flow in a Scramjet is complex, since it is characterized by the interaction of turbulence and shock waves and the injection, mixing, and burning of fuel with the oxidizer in a supersonic flow. To overcome the latter problem, a cavity flame-holder has been proposed and studied for its effectiveness on flame holding by many researchers. In the present study, the flow over a cavity has been investigated numerically. The first part of this thesis aims at the 2-D numerical simulation of the non-reacting supersonic flow over a cavity. Various turbulence models, including the RNG k-ε model, the Realizable k-ε model, and the SST k-ω model, with enhanced wall treatment have been evaluated for their accuracy of prediction for the supersonic flow over a cavity. Among the investigated models, the SST k-ω model with enhanced wall treatment has been shown to be in the best agreement with the experimental data in predicting the pressure distribution on the cavity wall. The second part of this thesis studies the supersonic combustion flow over a cavity. The SST-κ-ω turbulence model with enhanced wall function is adopted for the flow simulation, while the non-premixed Flamelet model with 32 reaction steps is employed for the turbulent combustion of hydrogen and oxygen. The predicted pressure distributions for the flow of hydrogen injected into nitrogen are generally under-estimated in comparison with the experimental data. This is due to the oversimplification of the present two-dimensional simulation for the actual three-dimensional flow. The flow of hydrogen injected into air in a reverse direction against the main flow at the ramp wall is investigated with three different equivalence ratios of 0.13, 0.17, and 0.23. Hydrogen has been predicted to be depleted at the exit of the combustor for all investigated cases. There is a marked difference in the location of shock distribution in the combustion chamber and the fuel distribution in the cavity for different equivalence ratios. The results obtained from the present study show that the cavity mechanism has significant effects on the fuel/air mixing and combustion.
摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 導論 - 1 -
§1-1 前言 - 1 -
§1-2 文獻回顧 - 2 -
§1-3 研究動機及目的 - 15 -
第二章 數學與物理模型 - 17 -
§2-1 基本假設 - 18 -
§2-2 氣相流場統御方程式 - 19 -
§2-3 紊流模型 - 22 -
§2-4 邊牆函數模型 - 27 -
§2-5 燃燒化學模型 - 31 -
第三章 數值方法 - 36 -
§3-1 控制體積轉換之傳輸方程式 - 37 -
§3-2 壓力耦合求解器運算法則(Pressure-Based) - 37 -
§3-3 鬆弛系數 - 38 -
§3-4 收斂標準 - 39 -
第四章 結果與討論 - 40 -
§4-1 超音速凹槽流場網格模型與邊界條件 - 41 -
§4-2 超音速凹槽流場網格獨立測試 - 42 -
§4-3 使用不同紊流模型之壁面壓力預測結果 - 42 -
§4-4 90度、30度凹槽超音速流場模擬分析 - 43 -
§4-5 結合凹槽之燃燒室流場邊界條件與網格模型 - 46 -
§4-6 結合凹槽之燃燒室之超音速無反應流場分析 - 48 -
§4-7 結合凹槽之燃燒室之超音速燃燒反應流場分析 - 51 -
§4-8 結合凹槽之燃燒室不同當量比之超音速燃燒流場比較 - 53 -
第五章 結論與未來工作 - 56 -
參考文獻 - 60 -
圖表 - 65 -
自述 - 99 -

1.Guerra, R. and Waidmann, W., “An Experimental Investigation of the Combustion of a Hydrogen Jet Injected Parallel in a Supersonic Air Stream, AIAA Paper, pp. 1-11, 1991.
2.Takahashi, S. and Wakai, K., “Effect of Combustion on Flow Field in a Model Scramjet Combustor, Combustion Institute, pp. 2143-2150, 1998.
3.Ajay Kumar, J. Philip Drummond, Charles R. McClinton, and James L. Hunt, “Research in Hypersonic Air-breathing Propulsion at the NASA Langley Research Center, Fifteenth International Symposium on Air breathing Engines Bangalore, India, 2001.
4.Chenault, C.F. and Beran, P.S., “K-ε and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows, AIAA Journal, Vol. 36, No. 8, 1998.
5.Menter, F. R., “Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, Vol.32, NO.8, 1994.
6.Bartosiewicz Y., Aidoun Z., Desevaux P., and Mercadier Y., Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, vol. 26, pp. 56-70, 2005.
7.Polivanov, P. A., “Numerical Simulation of Shock Wave/Turbulent Boundary Layer Interaction Using Fluent 6.3, International Conference on Methods of Aero physical Research, ICMAR, 2008.
8.Kumaran K. and Babu V., “Investigation of the Effect of Chemistry Model on the Numerical Predictions of the Supersonic Combustion of Hydrogen, Combustion and Flame, January 2009.
9.Rajasekaran A. and Babu V., “Numerical Simulation of Three-Dimension Reacting Flow in a Model Supersonic Combustor, Journal of Propulsion and Power, Vol.22, NO.4, July-August 2006.
10.Mitani, T., and Kouchi, T., “Flame Structure and Combustion Efficiency Computed for A Mach 6 Scramjet Engine, Combustion and Flame, Vol. 142, pp.187-196, 2005.
11.Tabet, F., “Hydrogen-Hydrocarbon Turbulent Non-Premixed Flame Structure, International Journal of Hydrogen Energy 34, pp.5040-5047, 2009.
12.廖偉傑, 紊流模式及三維效應對超音速燃燒流場模擬之影響, 成功大學航空太空工程學系碩士論文, 2011.
13.Pandey K. M., Member IACSIT and Sivasakthivel T., “Recent Advances in Scramjet Fuel Injection - A Review, International Journal of Chemical Engineering and Applications, Vol. 1, No. 4, December 2010.
14.Ben-Yakar, A. , Hanson, R. K., “Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow, Proceedings of the Twenty-Seventh International Symposium on Combustion, Combustion Inst. , Pittsburgh PA, pp. 2173–2180, 1998.
15.Takahashi S., Yamano G., Wakai K., Tsue M., and Kono M., “Self-ignition and transition to flame-holding in a rectangular scramjet combustor with a backward step, Proceedings of the Combustion Institute, Volume 28, pp. 705–712, 2000.
16.Ali M., Fujiwara, T. , and Leblanc J. E., “Influence of Main Flow Inlet Configuration on Mixing and Flameholding in Transverse Injection into Supersonic Airstream, International Journal of Engineering Science, Vol.38, pp. 1161-1180, 2000.
17.Ali M., Sadrul Islam A. K. M., and Ahmed S., “Mixing and Flame Holding with Air Inlet Configuration in Scramjet Combustor, International Journal of Heat and Mass Transverse, Vol.31, pp. 1187-1198, 2004.
18.Ali M., and Sadrul Islam A. K. M., “Study on Main Flow and Fuel Injector Configurations for Scramjet Applications, International Journal of Heat and Mass Transverse, Vol.49, pp. 3634-3644, 2006.
19.Gerlinger P., Bruggemann D., “Numerical Investigation of Hydrogen Strut Injections into Supersonic Airflows, Journal of Propulsion and Power, Vol. 16, No. 1, 2000.
20.Gruenig C., Avrashkov V., Mayinger F., “Self-Ignition and Supersonic Reaction of Pylon-Injected Hydrogen Fuel, Journal of Propulsion and Power, Vol. 16, No. 1, p. 35-40, 2000.
21.Donohue J. M. , McDaniel Jr J. C. , and Haj-Hariri H. , “Experimental and numerical study of swept ramp injection into a supersonic flow field, AIAA Journal, Vol. 32, p. 1860-1867, 1994.
22.McClinton C., Roudakov A., Kopehenov V., and Semenov V., “Comparative Flow Path Analysis and Design Assessment of an Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine at a Mach Number of 6.5, AIAA 96-4571, 1996.
23.Micka, D. J. , Driscoll, J. F. , “Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flameholder, Proceedings of the Combustion Institute, Vol. 32, No. 2, pp. 2397-2404, 2009.
24.Voland, R., Auslender, A. H., Smart , M. K., Roudakov, A. S., Semenov, V. L., and Kopchenov, V., “CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test, AIAA-99-4848.
25.Rodriguez, C. G., “CFD Analysis of the CIAM/NASA Scramjet, AIAA Paper 2002-4128, pp. 1-12, 2002.
26.Yu, K. H., Wilson, K. J., Smith, R. A., and Schadow, K. C., “Experimental Investigation on Dual-Purpose Cavity in Supersonic Reacting Flows, AIAA-98-0723, Presented at the 36th Aerospace Sciences Meeting and Exhibit, January 1998.
27.Yu, K. H., Wilson, K. J., and Schadow, K. C., “Effect of flame-holding cavities on supersonic-combustion performance, Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1287-1295, 2001.
28.Mathur, T., Gruber, M., Jackson, K., Donbar J., Donaldson W., Jackson T., and Billig F., “Supersonic Combustion Experiments with a Cavity-Based Fuel Injector, Journal of Propulsion and Power, Vol. 17, No. 6, 2001.
29.Baurle, R. A., Mathur, T., Gruber, M. R., and Jackson, K. R., “A Numerical and Experimental Investigation of a Scramjet Combustor for Hypersonic Missile Applications, AIAA Paper 98-3121, July 1998.
30.Rasmussen, C. C., Driscoll James F., Carter Campbell D., “Characteristics of cavity-stabilized flames in a supersonic flow, Journal of Propulsion and Power, Vol. 21, No.4, July-August 2005.
31.Rasmussen, C. C., Dhanuka, S., and Driscoll, J. F., “Visualization of Flameholding Mechanisms in a Supersonic Combustor Using PLIF, Proceedings of the Combustion Institute, Vol. 31, pp. 2505-2512, 2007.
32.Rasmussen, C. C., Driscoll James F., Hsu K. Y. ,Jeffrey M. Donbar, Gruber M. R., Campbell D. carter, “Stability limits of cavity-stabilized flames in supersonic flow, Proceedings of the Combustion Institute, Vol.30, pp. 2825-2833, 2005.
33.Owens, M.G., Tehranian, S., Segal, C. and Vinogradov, V. A., “Flame holding Configurations for Kerosene Combustion in a Mach 1.8 Airflow, Journal of Propulsion and Power, Vol. 14, No. 4, pp.456-461, 1998.
34.Captain. Allen W., King Paul I., Gruber M. R., Campbell D. Carter, and Hsu K. Y., “Fuel-Air Injection Effects on Combustion in Cavity-Based Flame-holders in a Supersonic Flow, Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2005-4105, 2005.
35.Charwat, A. F., Roos, J. N., Dewey, C. F., and Hitz, J. A., “An Investigation of Separated Flows – Part I, The Pressure Field, Journal of Aerospace Sciences, Vol. 28, No. 6, pp. 457-470, June 1961.
36.Charwat, A. F., Roos, J. N., Dewey, C. F., and Hitz, J. A., “An Investigation of Separated Flows – Part II, Flow in the Cavity and Heat Transfer, Journal of Aerospace Sciences, Vol. 28, No. 7, pp. 513-527, July 1961.
37.Stalling R.L. Jr., and Floyd J. W. Jr., “Experimental cavity pressure distribution at supersonic speeds, NASA Technical Paper 2683, 1987.
38.Dix R. E. and Bauer R. C., “Experimental and predicted acoustic amplitudes in a rectangular cavity, AIAA Paper 2000-0472, 2000.
39.Burnes, R., Parr, T. P., Wilson, K. J., and Yu, K., “Investigation of Supersonic Mixing Control Using Cavities: Effect of Fuel Injection Location, AIAA 2000-3618.
40.Liu O. Z., Hu Y. Li., Cai Y. H., Liu J. H., and Ling W. H., “Overview of flame holders of cavities in supersonic combustion, Journal of Propulsion Technology (China), Vol. 24, No. 3, pp. 265-271, June 2003.
41.Zhang, X., Edwards, J., “An investigation of supersonic oscillatory cavity flows driven by thick shear layers, Aeronautical Journal, Vol. 94, No. 940, pp. 355-364, 1990.
42.Ben-Yakar, A., Hanson, R. K., “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview, Journal of Propulsion and Power, Vol. 17, No. 4, pp. 869-877, 2001.
43.Gruber M. R., Baurle R. A. , Mathur T., and Hsu K. Y., “Fundamental studies of cavity-based flame holder concepts for supersonic combustors, Journal of Propulsion and Power, Vol. 17 , No. 1, pp. 146-153, 2001.
44.Gruber M. R., Donbar J. M., Carter C. D., and Hsu K. Y., “Mixing and combustion studies using cavity-based flame-holders in a supersonic flow, Journal of Propulsion and Power, Vol. 20, pp. 769–778, 2004.
45.Kim K. M., Beak S. W., and Han C. Y., “Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection, International of Journal of Heat and Mass Transfer, Vol. 47, pp. 271-286, 2004.
46.Neely A. J., Riley C., Boyce R. R., Mudford N. R., “Hydrocarbon and hydrogen-fuelled scramjet cavity flameholder performance at high flight Mach numbers, 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2003-6989, 2003.
47.Neely A. J., Stotz I., O’Byrne S., Boyce R. R., Mudford N. R., “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet, AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference, pp.1478-1485, May 2005.
48.Jeong E., and Jeung I.-S., “Numerical Simulation Study on Cavity Enhanced Supersonic Combustion of Upstream Fuel Injection, 5th Asia-Pacific Conference on Combustion, July 2005.
49.Jeong E., O’Byrne S., Jeung I.-S., and Houwing A. F. P., “Investigation of supersonic combustion with angled injection in a cavity-based combustor, Journal of Propulsion and Power, Vol 24, No. 6, pp. 1258-1268, November-December 2008.
50.FLUENT, 12.0 User’s Guide, ANSYS Inc, 2009
51.Anderson, J. D., “Hypersonic and High-Temperature Gas Dynamics, AIAA, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊