跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉桓羽
研究生(外文):Hwan-YuLiu
論文名稱:導電高分子混入水熱法製備之碲化鉍之熱電性質研究
論文名稱(外文):Fabrication and Thermoelectric Properties of Conductive Polymer blended with Bismuth telluride made by Hydrothermal Preparation
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:熱電奈米材料
外文關鍵詞:thermoelectricnanomaterial
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本文嘗試在低成本與簡單設備的條件下製作具有高功率因子的熱電薄膜,在三種導電高分子中選出具有較佳熱電性質的PEDOT:PSS做為基材,再分別將購買的碲化鉍粉末,化學法合成出來的碲化鉍粉末經由氯化氫處理,以及電化學沉積後分離的Bi-Se-Te粉末加入其中, 量測熱電性質。再從中選出具有最佳特性的P-type薄膜後與利用聚乙烯亞胺對奈米碳管改質過後得到的N-type薄膜嘗試做成元件,然而在材料的熱電特性與塊材相比仍有一段差距的情形下,還有很大的改善空間。
The main purpose of the research is that fabricating a thermoelectric film with a high value of Power Factor on the condition of low-cost and easy-make.At first,choosing the base material,PEDOT:PSS from three kinds of conductive polymers which has the best thermoelectric performance.Then blend with the following materials:Commercial Bi2Te3 powders,the Bi2Te3 nanopowders synthesized by chemical method,and the Bi-Se-Te powders made by electrochemical deposition.The same as the first step,choosing the P-type thin film which has the highest perpformance and combine with the N-type material:PEI-SWNT.Try to do a organic thermoelectric cooler device.However,thermoelecctric properties are not as good as bulk material,resulting in a efficiency of device still much room for improvement.
封面
口試合格簽名頁
中文摘要
英文摘要
誌謝
目錄 I
表目錄 IV
圖目錄 V
第一章 序論 1
1.1歷史 1
1.2熱電材料介紹 2
1.3熱電材料製備方法 3
1.4導電高分子 8
1.5 動機 10
第二章 理論介紹 11
2.1席貝克效應 ( Seebeck effect )11
2.2帕耳帖效應 ( Peltier effect )11
2.3湯姆森效應(Thomson effect) 12
2.4熱電優值 ( Figure ofmerit, Z ) 12
2.5化學法合成碲化鉍奈米粉末之原理 13
2.6電化學沉積原理 14
第三章 實驗製程與量測 16
3.1實驗材料與儀器 16
3.1.1實驗材料 16
3.1.2實驗儀器 21
3.2實驗步驟 24
3.2.1 PDMS混入奈米碳管成膜 24
3.2.2 P3HT/DCB混入奈米碳管材料成膜 24
3.2.3 PEDOT:PSS摻雜DMSO成膜 24
3.2.4化學法合成碲化鉍奈米粉末步驟 25
3.2.5含碲化鉍粉末之熱電漿料成膜步驟 25
3.2.6碲化鉍粉末混入PEDOT:PSS之複合材料成膜步驟 26
3.2.7電化學沉積Bi-Se-Te薄膜步驟 26
3.2.8 PEI-SWNT改質成膜 27
3.2.9 量測性質 27
3.2.10 元件製作 28
第四章 實驗結果與討論 29
4.1.1熱電漿料成膜結果 29
4.1.2複合材料成膜研究 29
4.1.3電化學沉積結果 31
4.1.4元件製作部分 33
第五章 結論 35
參考文獻 37
表目錄
表1-1 半導體材料與金屬材料之Seebeck Coefficient 43
表4-1市售碲化鉍粉末加入含5%DMSO-PEDOT:PSS的熱電性質 43
表4-2 PEI-SWNT加入DMF與P3HT/DCB成膜熱電性質 44
表4-3電沉積電壓0.2V霍爾量測值 44
表4-4 電沉積電壓0.1V霍爾量測值 44
表4-5 電沉積不同電壓沉積速率 45
表4-6 電沉積元素比例 45
表4-7電沉積試片翻印與摻入含5%DMSO的PEDOT:PSS溶液之熱電性質 45
表4-8實驗選擇高分子的熱傳導係數 46
圖目錄
圖1-1鍍膜翻印圖 47
圖2-1電沉積架構示意圖 47
圖3-1抽氣設備示意圖 48
圖3-2 Seebeck Coefficient量測載台示意圖 48
圖4-1 熱電漿料於不同轉速與時間加熱150度 49
圖4-2升溫速率5℃/min,溫度401度,無分散劑 50
圖4-3升溫速率10℃/min,溫度527度,含分散劑 50
圖4-4(a) PDMS加入不同比例奈米碳管的電導率 51
圖4-4(b) PDMS加入不同比例奈米碳管的席貝克係數 51
圖4-4(c) PDMS加入不同比例奈米碳管的功率因子 51
圖4-5(a) P3HT/DCB加入不同比例奈米碳管的電導率 52
圖4-5(b) P3HT/DCB加入不同比例奈米碳管的席貝克係數 52
圖4-5(c) P3HT/DCB加入不同比例奈米碳管的功率因子 52
圖4-6(a) PEDOT:PSS 加入不同比例DMSO電導率 53
圖4-6(b) PEDOT:PSS 加入不同比例的DMSO席貝克係數 53
圖4-6(c) PEDOT:PSS加入不同比例的DMSO 的功率因子 53
圖4-7 市售碲化鉍經5%HCl處理前SEM 54
圖4-8 市售碲化鉍經5%HCl處理後SEM 54
圖4-9 市售碲化鉍經5%HCl處理前SEM-EDS 55
圖4-10 市售碲化鉍經5%HCl處理後SEM-EDS 55
圖4-11化學法合成碲化鉍粉末SEM圖(20000倍) 56
圖4-12化學法合成碲化鉍粉末SEM圖(50000倍) 56
圖4-13化學法碲化鉍粉末XRD 57
圖4-14 JCPDS卡號 15-0863 - Bi2Te3 57
圖4-15(a) 合成碲化鉍粉末有無HCl處理的電導率(σ) 58
圖4-15(b) 合成碲化鉍粉末有無HCl處理的電導率(σ) 58
圖4-15(c) 合成碲化鉍粉末有無HCl處理的電導率(σ) 58
圖4-16 化學法合成碲化鉍粉末5%HCl處理前SEM-EDS 59
圖4-17(a) 化學法合成碲化鉍粉末5%HCl處理後SEM-EDS 59
圖4-17(b) 化學法合成碲化鉍粉末5%HCl處理後SEM-EDS-2 60
圖4-17(c) 化學法合成碲化鉍粉末5%HCl處理後SEM-EDS-3 60
圖4-18 (a)合成碲化鉍粉末5%HCl處理改變製程溫度之電導率 61
圖4-18 (b)合成碲化鉍粉末5%HCl處理改變製程溫度之席貝克係數 61
圖4-18 (c)合成碲化鉍粉末5%HCl處理改變製程溫度之功率因子 61
圖4-19 電沉積電壓0.9V SEM圖(1000倍) 62
圖4-20 電沉積電壓0.7V SEM圖(1000倍) 62
圖4-21 電沉積電壓0.2V SEM圖(1000倍) 63
圖4-22 電沉積電壓0.1V SEM(1000倍) 63
圖4-23電沉積電壓0.9V SEM圖(10000倍) 64
圖4-24電沉積電壓0.7V SEM圖(10000倍) 64
圖4-25電沉積電壓0.2V SEM圖(10000倍) 65
圖4-26 電沉積電壓0.1V SEM圖(10000倍) 65
圖4-27電沉積電壓0.9V SEM圖(cross section 10000倍) 66
圖4-28 電沉積電壓0.7V SEM圖(cross section 10000倍) 66
圖4-29 電沉積電壓0.2V SEM圖(cross section 10000倍) 67
圖4-30 電沉積電壓0.1V SEM圖(cross section 10000倍) 67
圖4-31電沉積試片刮除後粉末摻入含5%DMSO的PEDOT:PSS溶液
SEM-EDS 68
圖4-32 熱電致冷示意圖 68
圖4-33有機熱電致冷元件結構圖 69
圖4-34有機熱電致冷元件 69
圖4-35 通入電流元件溫度量測結果 70
圖4-36 文獻量測單一材料Peltier效應示意圖 70
圖4-37 參考文獻架設及實際量測圖 70
圖4-38 量測含0.125% CNT的P3HT薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±24V) 71
圖4-39 量測含0.125% CNT的P3HT薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±30V) 71
圖4-40 量測含0.125% CNT的P3HT薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±20V) 72
圖4-41 量測含0.5% CNT的P3HT薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±20V) 72
圖4-42 因電極與材料阻值相差過大在接面的部分產生吸熱與放熱的現象而量測到的錯誤資訊 73
圖4-43 將尼龍纖維浸泡於含5%DMSO的PEDOT:PSS溶液中乾燥後試片 73
圖4-44量測浸泡於含5%DMSO的PEDOT:PSS溶液中乾燥後的尼龍纖維試片的Peltier effect兩面各別溫度及兩面溫度差 74
圖4-45量測含0.5%CNT的PDMS薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±30V) 74
圖4-46 圖4-46 量測含1%CNT的PDMS薄膜Peltier effect兩面各別溫度及兩面溫度差(供應電壓±30V) 75
[1] R.A. Laudise, W.A. Sunder, R.L. Barns, R.J. Cava, T.Y. Kometani “Czochralskigrowth of dopedsinglecrystals of Bi2Te3,Journal of Crystal Growth Volume 94, Issue 1,Pages53–61, (1989)
[2] Osamu Yamashita, Shoichi Tomiyoshi, and Ken Makita “Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys., Vol. 93, No. 1, (2003)
[3] Dow-Bin Hyun, Jong-Seung Hwang, Jae-Dong Shim“Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing methodJOURNAL OF MATERIALS SCIENCE 36 P1285 –1291 (2001)
[4] Bed Poudel,Qing Hao , Yi Ma1, Yucheng Lan, Austin Minnich, Bo Yu, Xiao Yan, Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, Junming Liu, Mildred S. Dresselhaus, Gang Chen, and Zhifeng Ren “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys SCIENCE VOL 320 (2008)
[5] L.D.Zhao, B.P. Zhang, J.-F. Li, H.L. Zhang, W.S. Liu “Enhanced thermoelectric and mechanical properties in textured N-type Bi2Te3 prepared by spark plasma sintering Solid State Sciences 10 651-658 (2008)
[6] Min Zhou, Jing-Feng Li, Takuji Kita Nanostructured AgPbmSbTem+2 System Bulk Materials wit Enhanced Thermoelectric Performance JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, VOL.1 30, 4527-453 (2008)
[7] Dong-Ho Kim , Eungsun Byon , Gun-Hwan Lee , Sunglae Cho “Effect of deposition temperature on the structural and thermoelectric Properties of bismuth telluride thin films grown by co-sputtering Thin Solid Films 510 148–153 (2006)
[8] H.E.A. El-Sayed Structural and optical properties of thermally evaporated Bi2Te3 films Applied Surface Science 250 70–78(2005)
[9] A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, A. Boyer “Preparation and characterization of MOCVD bismuth telluride thin films Journal of Crystal Growth 194 336-341 (1998)
[10] Yuan Deng, Ce-Wen Nan, Guo-Dan Wei, Lin Guo and Yuan-hua Lin Organic-assisted growth of bismuth telluride nanocrystals Chemical Physics Letters 374 410–415 (2003)
[11] X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu “ Bismuth telluride nanotubes and the effects on the thermoelectric Properties of nanotube-containing nanocomposites Appl. Phys. Lett. 86, 062111 (2005)
[12] Weixin Zhang, Lei Zhang, Youwei Cheng, Zehua Hui, Xiaoming Zhang,Yi Xie, and Yitai Qian Synthesis of  nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions Materials Research Bulletin 35 2009–2015 (2000)
[13] Y.Q. Cao, T.J. Zhu, X.B. Zhao “Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method Journal of Alloys and Compounds 449 109–112 (2008)
[14] J. Weber , K. Potje-Kamloth, F. Haase, P. Detemple, and F. V¨olklein, T. Doll “Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics Sensors and Actuators A 132 325–330 (2006)
[15] G. Jeffrey Snyder and Eric S. Toberer “Complex thermoelectric materials Nature materials VOL 7 105-114 (2008)
[16] W.Q. AO, L. WANG, J.Q. LI, FRED PAN, and C.N. WU “Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material Journal of ELECTRONIC MATERIALS, Vol. 40, No. 9, (2011)
[17] Dasaroyong Kim, Yeonseok Kim, Kyungwho Choi, Jaime C. Grunlan, and Choongho Yu “Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) “ ACS Nano VOL. 4 NO. 1 513–523 (2010)
[18] B.Zhang, J. Sun, H. E. Katz, F. Fang, and R. L. Opila “Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi2Te3 Powder Composites ACS Applied Materials & Interfaces VOL. 2 NO. 11 3170–3178 (2010)
[19] Eric Hu, Akif Kaynak, Yuncang Li “Development of a cooling fabric from conducting polymer coated fibres: Proof of concept Synthetic Metals 150 139–143 (2005)
[20] Safa Kasap, “THERMOELECTRIC EFFECT IN METALS: THERMOCOUPLES
[21] Kevin C. See, Joseph P. Feser, Cynthia E. Chen, Arun Majumdar,
Jeffrey J. Urban, and Rachel A. Segalman “Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics Nano Lett., 10 (11), pp 4664–4667 (2010)
[22] Y.-C. HA, H.-J.SOHN, G.-J. JEONG, C.K. LEE and K. I. RHEE
“Electrowinning of tellurium from alkaline leach liquor of cemented Te J Appl. Electrochem. 30. 315(2000)
[23] S.P. Summers, K.A. Abboud, S.R. Farrah, G.J. Palenik “Syntheses and Structures of Bismuth(III) Complexes with Nitrilotriacetic Acid,Ethylenediaminetetraacetic Acid, andDiethylenetriaminepentaacetic AcidInorg. Chem., 33, p.88 (1994)
[24] Luxia Bu, Wei Wang, Hui Wang “Effect of the substrate on the electrodeposition of Bi2Te(3-y)Sey thin films Materials Research Bulletin 43 1808–1813(2008)
[25] B.Y.Yoo, C. K. Huang, J.R. Limb, J. Hermanb, M.A. Ryan, J.-P. Fleurial, N.V.Myung “lectrochemically deposited thermoelectric N-type Bi2Te3 thin films Electrochimica Acta 50 4371–4377 (2005)
[26] Shanghua Li, Hesham M. A. Soliman, Jian Zhou, Muhammet S. Toprak,Mamoun Muhammed, Dieter Platzek, Pawel Ziolkowski and Eckhard Müller “Effects of Annealing and Doping on Nanostructured Bismuth Telluride Thick FilmsChem. Mater. 20, 4403–4410 (2008)
[27] Pilwon Heo, Kenji Hagiwar, Ryoichi Ichino, and Masazumi Okido, “Electrodeposition and Thermoelectric Characterization of Bi2Te3 Journal of The Electrochemical Society, 153 4 C213-C217 (2006)
[28]Kevin M. Coakley, Michael D. Mcgehee “Conjugated Polymer Photovoltaic Cells Chem. Mater. 2004, 16, 4533-4542
[29] Yimeng Sun,Zhongming Wei,Wei Xu ,Daoben Zhu “A three-in-one improvement in thermoelectric properties of polyaniline brought by nanostructures Synthetic Metals 160 2371–2376 (2010)
[30] D.S. Maddison, J. Unsworth, R.B. Roberts “Electrical conductivity and thermoelectric power of polypyrrole with different doping levels Synth. Met., 26, pp. 99–108 (1988)
[31]KUEI-CHIEN CHANG, MING-SHAN JENG,CHANG-CHUNG YANG,YA-WEN CHOU, SHIH-KUO WU, MARIN ANDREW THOMAS, and YEN-CHUN PENG“The Thermoelectric Performance of Poly(3,4-ethylenedi-Oxythiophene)/Poly(4-styrenesulfonate) Thin Films “Journal of ELECTRONIC MATERIALS, Vol. 38, No. 7(2009)
[32]LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo“ Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilm CHIN. PHYS. LETT. Vol. 27, No. 5 (2010) 057201
[33] X.B. Zhao, T. Sun, T.J. Zhu, and J.P. Tu Received In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi2Te3 nanocapsules J. Mater. Chem., 15, 1621–1625 1621 (2005)
[34]Feng Xiao, Carlos Hangarter, Bong young Yoo, Young woo Rheem, Kyu-Hwan Lee, Nosang V. Myung “Recent progress in electrodeposition of thermoelectric thin films and nanostructures Electrochimica Acta 53 8103–8117 (2008)
[35] YI MA, WARUNA WIJESEKARA and ANDERS E.C. PALMQVIST “Electrochemical Deposition and Characterization of Thermoelectric Ternary (BixSb1-x)2Te3 and Bi2(Te1-ySey)3Thin Films , Journal of ELECTRONIC MATERIALS Vol. 41 No. 6,
[36] 朱旭山 “熱電材料與元件之發展與應用 220 期 工業材料雜誌 (2004)
[37] Zhongrui Li,Viney Saini,Enkeleda Dervishi,Vasyl P. Kunets,Jianhui Zhang,Yang Xu,Alexandru R. Biris,Gregory J. Salamo,and Alexandru S. Biris“Polymer functionalized N-type single wall carbon nanotube photovoltaic devices, APPLIED PHYSICS LETTERS 96, 033110 (2010)
[38] Yeontack Ryu,Dallas Freeman,and Choongho Yu “High electrical conductivity and N-type thermopower from double-/single-wall carbon nanotubes by manipulating charge interactions between nanotubes and organic/inorganic nanomaterials, CARBON 49 4745 – 4751(2011)
[39] 施孝東 “電鍍碲化鉍之片狀結構成長機制研究,清華大學材料科學與工程學系碩士論文(2009)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top