跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:衛安德
研究生(外文):AndrewVedady
論文名稱:Analysis of the Major Movements of Prices in the Dynamic Random Access Memory (DRAM)Industry to Estimate Future Demand
論文名稱(外文):Analysis of the Major Movements of Prices in the Dynamic Random Access Memory (DRAM)Industry to Estimate Future Demand
指導教授:偉耶倫
指導教授(外文):Alan Webb
學位類別:碩士
校院名稱:國立成功大學
系所名稱:國際經營管理研究所碩士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:56
外文關鍵詞:High techDRAM chipsProduct lifecycleCategories of adoptersStructural model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This research looked to find a structural model to forecast future global sales of DRAM 1Mb. Determining demand for a new high tech product that is replacing an older technology presents challenges to manufacturers and price setters. Understanding the market and where it is headed are necessary for decisions regarding manufacturing investments. The concept of the product lifecycle and the categories of adopters were explored to help understand where the market stood and what changes might be coming in the future.
The structural model was created with aggregating the global DRAM shipments with the average memory content per electronic device. Data was obtained through inSpectrum, the IMF and the World Bank. Quarterly and monthly data for the period of January, 2006 to June, 2010 was used for the analysis. The goal was to see if price and income were the mitigating factors to predict demand of global DRAM. Through multiple regression analysis it was found that income held the strongest relationship to demand. Price was not a significant variable in the three computer device markets. Alternative indicators of price could be further studied to test for validity.

ABSTRACT I
ACKNOWLEDGEMENTS II
TABLE OF CONTENTS III
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER ONE INTRODUCTION 1
1.1 Research Background and Motivation. 1
1.2 Research Structure. 2
CHAPTER TWO LITERATURE REVIEW 4
2.1 Review Structure. 4
2.2 Definition of Dynamic Random Access Memory (DRAM). 4
2.3 History of the DRAM Industry. 5
2.4 Status of the Current Market. 8
2.5 Common Characteristics of High Tech Products. 12
2.6 Forecasting Customer Demand. 15
2.7 Profile of High Tech Customers. 17
2.8 Definition of Demand, Price Elasticity, Derived Demand, Linear Regression, Time-Series Analysis. 21
2.8.1 Demand. 21
2.8.2 Price Elasticity. 22
2.8.3 Derived Demand. 23
2.8.4 Linear Regression. 23
2.8.5 Time-Series Analysis. 25
2.8.5 Statistical Estimation of Demand Functions. 26
2.8.6 Simple Linear Regression Model (SLRM). 26
2.9 Case Study of DRAMs as a Model for Technological Evolution. 28
2.9.1 Price and Volume History. 29
2.9.2 Logistic Substitution in DRAM Generations. 30
2.9.3 Conclusions. 31
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 32
3.1 The Model. 32
3.1.1 The Estimation Factors of DRAM Demand. 34
3.1.2 The Economic Component Specification. 36
3.1.3 The Technology Component of the Specification. 36
3.2 Critical Variables. 37
3.2.1 Price of DRAM Chips. 37
3.2.2 Income. 37
3.2.3 Variable for new Software Products. 38
3.3 Hypotheses to Be Tested. 38
3.4 Data Collection. 39
3.5 Data Analysis Procedures. 39
3.5.1 Multiple Regression Analysis. 39
CHAPTER FOUR DATA ANALYSIS 40
4.1 Introduction. 40
4.2 Data Collection. 40
4.3 Variable Data Explanations. 41
4.3.1 Seasonal Variables (DV1,DV2,DV3). 41
4.3.2 Financial Downturn Dummy Variable (DV19). 41
4.3.3 Income Variable (GDP). 41
4.3.4 Price Variable (P). 42
4.4 Regression Analysis. 42
4.4.1 Computer Shipment Regression Results. 43
4.4.1.1 Notebook Computer Shipments (NB PC). 44
4.4.1.2 Desktop Computer Shipments (DT PC). 44
4.4.1.3 Server Shipments (Ser PC). 45
4.4.2 DRAM Content per Computer. 46
4.4.3 Forecast of Shipments. 46
4.4.5 Forecast of Content per Box. 47
CHAPTER FIVE CONCLUSION AND SUGGESTIONS 49
REFERENCES 52


Aizcorbe, A. (2005). Moore's law, competition, and Intel's productivity in the mid-1990s. American Economic Review, 95(2), 305-308.
Aizcorbe, A., & Kortum, S. (2004). Moore's law and the semiconductor industry: A vintage model.
Armstrong, J. S. (2006). Demand forecasting: Evidence-based methods. Update.
Dezhi, C., & Richard, L.-H. (2011). Modes of technological leapfrogging: Five case studies from China. J. Eng. Technol. Manag., 28(1-2), 93-108.
Field, M. K., & Pagoulatos, E. (1997). The cyclical behavior of price elasticity of demand. Southern Economic Journal, 64(1), 118-129.
Friedman, M. (1962). Price theory. New Brunswick: Transaction Publishers.
Hamel, G. (1997). Killer strategies that make shareholders rich. Fortune, 70-84.
Hawkins, E. R. (1957). Methods of estimating demand. Journal of Marketing, 21, 428-438.
Kang, J. (2010). A Study of the DRAM industry. Unpublished Masters Thesis, Massachusetts Institute of Technology, Massachusetts.
Karlgaard, R. (2003). CEOs talk tech. Forbes, 172, 33.
Kim, C.-W., & Lee, K. (2003). Innovation, technological regimes and organizational selection in industry evolution: a 'history friendly model' of the DRAM industry. Ind Corp Change, 12(6), 1195-1221.
Levary, R. R., & Han, D. (1995). Choosing a technological forecasting method. Industrial Management, 37(1), 14.
McGuigan, J. R., Moyer, R. C., & Harris, F. H. B. (2008). Economics for managers: Thomson/ South-Western.
Moore, G. (2002). Crossing the chasm, marketing and selling technology to mainstream customers. New York: Harper Business.
Patterson, D., Anderson, T., Cardwell, N., & Fromm, R. (1997). A case of intelligent DRAM: IRAM. University of California.
Pindyck, R. S., & Rubinfeld, D. L. (1991). Econometric models & economic forecasts. New York: McGraw-Hill
Rogers, E. (1983). Diffusion of innovations. New York: Free Press.
Shin, J.-S., & Jang, S.-W. (2005). Creating first-mover advantages: The case of Samsung electronics. Unpublished Masters Thesis, University of Singapore, Singapore.
Tharakan, P. K. M. (1995). The Japan-EC DRAMs anti-dumping undertaking: Was it justified? What purpose did it serve? : Center for Developmment Studies, University of Antwerp-(UFSIA).
Varian, H. R. (2001). High-technology industries and market structure.
Victor, N. M., & Ausubel, J. H. (2002). DRAMs as model organisms for study of technological evolution. Technological Forecasting and Social Change, 69(3), 243-262.
Wingard, D. E. (2009). Addressing interleaved multichannel memory challenges. EDN, 54(16), 32-36.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top