跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳馥毓
研究生(外文):Fu-YuChen
論文名稱:自我相關製程能力指標在評估環境影響上之應用研究
論文名稱(外文):Developing Capability Index for Autocorrelated Data with Applications to the Evaluation of Environmental Impacts
指導教授:潘浙楠潘浙楠引用關係
指導教授(外文):Jeh-Nan Pan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:統計學系碩博士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:製程能力分析自我相關製程能力指標均方誤差平均絕對值誤差率
外文關鍵詞:process capability analysiscapability indices for autocorrelated datamean squared errormean absolute percent error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
高度的經濟發展固然提高人類的生活水準,但其帶來的汙染卻嚴重地影響我們的生存環境,此等環境汙染問題以空氣汙染所造成之影響最為廣泛,有鑑於此,世界各國均紛紛訂定相關罰則以防止空氣汙染更進一步惡化。因此,建立客觀的環境風險評估指標以作為有效監控環境品質與事前防範的參考依據,已成為國際上追求永續發展(global sustainability)之核心課題。製程能力分析(process capability analysis, PCA)係統計製程管制(statistical process control, SPC)中的一種重要的工具。傳統的製程能力分析均假設品質特性彼此獨立,但在實際生產過程中,我們所蒐集到的資料往往會存在自我相關特性,因此,此類資料若以傳統製程能力分析的方法進行評估極易產生誤判,而導致不必要的成本浪費。本研究乃針對Sun et al. (2010) 所制定望目特性下自我相關製程能力指標之缺點進行修正,制定出一望目特性下新的及望小特性下新的自我相關製程能力指標,再利用均方誤差(mean squared error, MSE)與平均絕對值誤差率 (mean absolute percent error, MAPE)探討並與其他學者所提出之製程能力指標進行比較與分析,結果證實新自我相關製程能力指標的表現最為穩健亦較接近實際值。最後,本研究參照行政院環保署所訂定各種空氣汙染物的管制濃度,以二氧化氮與一氧化碳濃度為例,進行台灣地區空氣汙染程度之評估,研究結果可供政府決策單位及業界未來在監控環境汙染資料及評估環保表現等實務工作上之參考。
The economic development have caused many serious environmental problems, and thereby reduced the living quality of human beings. To reduce the environmental contamination, especially the air pollution problems, major organizations and corporations around the world start to systematically review the environmental performance of air quality of their industries based on the regulations stipulated by Environmental Protection Agency of each country. In order to prevent the environment from further deterioration contamination, the establishment of environmental risk indices for monitoring and evaluating environmental performance becomes an important research topic. Process capability analysis is a very important SPC tool for monitoring and evaluating process performance. Traditionally, Process Capability indices are developed assuming that the observations of process output are independent and follow normal distribution. However, in most cases, the process data are autocorrelated. The autocorrelated process, if mistreated as an independent process, will result in an improper decision and lead to unnecessary manufactory loss. In this paper, the novel capability indices are developed to relieve the independent assumption for nominal-the-best and smaller-the-better cases. Furthermore, we use MSE (mean squared error) and MAPE (mean absolute percent error) to compare the accuracies of our proposed indices with the existing ones. The results show that our novel capability indices are the most robust one. Finally, we use the recent NO2 and CO emission of Taiwan district as an example to evaluate the performance of air pollution. Hopefully, it can provide a useful reference for the decision maker in government and industries.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧與探討 4
2.1 時間數列 4
2.2 製程能力分析 5
2.2.1常態製程能力指標 5
2.2.2 Krishnamoorthi製程能力指標 6
2.2.3自我相關製程能力分析 7
2.2.4自我相關製程能力指標Cpmr與Cpkr 8
2.2.5自我相關製程能力指標Cpa與Cpma 9
2.3 Box-Cox 常態轉換 13
第三章 自我相關製程能力指標 14
3.1 資料檢定 14
3.2 自我相關係數顯著性 15
3.3 望目特性下之自我相關製程能力指標 16
3.4 望小特性下之自我相關製程能力指標 18
3.5 自我相關製程能力指標之模擬探討與分析 19
3.5.1製程能力指標之平均值比較 20
3.5.2製程能力指標準確性之評估標準 29
3.5.3模擬結果與分析 30
第四章 台灣地區空氣汙染實例分析 40
4.1 研究問題介紹 40
4.1.1空氣汙染之定義與來源 40
4.1.2主要空氣汙染物的種類與影響 40
4.2 空氣汙染資料簡介 43
4.3 空氣汙染資料分析與結果 45
4.3.1台灣地區二氧化氮(NO2)濃度資料分析 45
4.3.2台灣地區一氧化碳(CO)濃度資料分析 47
第五章 結論與未來研究方向 50
5.1 結論 50
5.2 未來研究方向 51
參考文獻 52
附錄A 55
附錄B 56
附錄C 66

1.Box, G. E. P. and Cox, D. R. (1964), “An analysis of transformations, Journal of the Royal Statistical Society, Series B, Vol.26, No.2, pp.211-246.
2.Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.
3.Box, G. E. P. and Ljung, G. M. (1978), “On a measure of a lack of fit in time series models, Biometrika, Vol.65, No.2, pp.297–303.
4.Box, G. E. P. and Pierce, D. A. (1970), “Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American Statistical Association, Vol.65, No.332, pp.1509–1526.
5.Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994), Time Series Analysis: Forecasting can Control, Prentice Hall, Englewood Cliffs, NJ.
6.Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988), “A new measure of process capability: Cpm, Journal of Quality Technology, Vol.20, No.3, pp.162-175.
7.Chou, C. Y., Jiang, C. C. and Chen, C. S., (1999), “A study on process capability index Cp for correlated data, Proceedings of The National Science Council (PartA : Physical Science and Engineering), Vol.23, No.2, pp.319-329.
8.Guevara, R. D. and Vargas, J. A. (2007), “Comparison of process capability indices under autocorrelated data, Revista Colombiana de Estadística, Vol.30, No.2, pp.301-316.
9.Juran, J. M. (1974), Quality Control Handbook, McGraw-Hill, New York.
10.Kane, V. E. (1986), “Process capability indices, Journal of Quality Technology, Vol.18, No.1, pp.41-52.
11.Kotz, S. and Johnson, N. L. (1993), Process Capability Indices, Chapman and Hall, London.
12.Krishnamoorthi, K. S. (1990), “Capability indices for process subject to unilateral and positional tolerances, Quality Engineering, Vol.2, No.4, pp.461-471.
13.Noorossana, R., (2002), “Short communication process capability analysis in the presence of autocorrelation, Quality and Reliability Engineering International, Vol.18, pp.75-77.
14.Pan, J. N. and Chen, S. C. (2010), “New robust estimators for detecting non-random patterns in multivariate control charts: a simulation approach, Journal of Statistical Computation and Simulation, Vol.81, No.3, pp.289-300.
15.Pearn, W. L., Kotz, S. and Johnson, N. L. (1992), “Distributional and inferential properties of process capability indices, Journal of Quality Technology, Vol.24, No.4, pp.216-231.
16.Phillips, P. C. B. and Perron, P. (1988), “Testing for a unit root in time series regression, Biometrika, Vol.75, No.2, pp.335–346.
17.Render, B., Stair, R. and Hanna, M. E. (2009), Quantitative Analysis for Management, Pearson Prentice Hall, London.
18.Said, S. and Dickey, D. (1984), “Testing for unit roots in autoregressive-moving average model of unknown order, Biometrica, Vol.77, No.3, pp.599-607
19.Scagliarini, M. (2002), “Estimation of Cp for autocorrelated data and measurement errors, Communications in Statistics − Theory and Methods, Vol.31, No.9, pp.1647-1664.
20.Scagliarini, M. (2010), “Inference on Cpk for autocorrelated data in the presence of random measurement errors, Journal of Applied Statistics, Vol.37, No.1, pp.147-158.
21.Shore, H. (1997), “Process capability analysis when data are autocorrelated, Quality Engineering, Vol.9, No.4, pp.615-626.
22.Sun, J., Wang, S. and Fu, Z. (2010), “Process capability aanlysis and estimation scheme for autocorrelated Data, Journal of Systems Science and Systems Engineering, Vol.19, No.1, pp.105-127.

23.Vannman, K. and Kulahci, M., (2007), “A model-free approach to eliminate autocorrelation when testimg for process capability, Quality and Reliability Engineering International, Vol.24, No.2, pp.213-228.
24.Wallgren, E. (1996), “Properties of the Taguchi capability index for Markov dependent quality characteristics, Lic.Thesis, Uppsala University.
25.Wallgren, E. (2001), “Confidence limits for the process capability index Cpk for autocorrelated quality Characteristics, Frontiers in Statistical Quality Control edited by Lenz, H. J. and Wilrich, P. Th, Physica-Verlag, Heidelberg.
26.Yang, K. and Hancock, W. M., (1990), “Statistical quality control for correlated samples, International Journal of Production Research, Vol.28, No.3, pp.595-608.
27.Zhang, N. F. (1998), “Estimating process capability indexes for autocorrelated data, Journal of Applied Statistics, Vol.25, No.4, pp.559-574.
28.吳柏林(1995)。時間數列分析導論,華泰文化事業股份有限公司
29.潘浙楠(2009)。品質管理二版,華泰文化事業股份有限公司。
30.行政院環境保護署(2010)。2009年永續發展指標系統評量結果。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top