跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳國欽
研究生(外文):I Putu Andhi IndiraKusuma
論文名稱:水下通訊測試平台於多重路徑時變通道之分析與參數探討
論文名稱(外文):Parameter Study and Analysis of Time Varying Multipath Effect in the Underwater Communication Testing Platform
指導教授:涂季平
指導教授(外文):Gee-Pinn Too
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:100
中文關鍵詞:時變多重路徑效應時間反轉法位元誤差率
外文關鍵詞:Time Varying Multipath EffectTime Reversal MirrorBits Error Rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
在水下通信測試平台中,聲音訊號和邊界之間的相互作用所產生的多重路徑效應,以及水下換能器在波浪影響產生的振盪位移所引起的到達時間延遲通道(ATLV)效應,包含到達時間延遲、頻率及振幅的變化。這兩個效應皆使接收信號引起嚴重的符號間干擾(ISI),因此成為水下通訊的嚴重課題。在本文中,水下通道模擬利用映像法(Image Method),並對時變多重路徑條件下的通道脈衝響應(CIR)進行隨機分析。其中,考慮了由水下換能器振盪,波高和相對速度所造成都普勒效應,包含到達時間延遲(ATLV)及幅度變化。在通訊調變技術方面,則是利用二進制相移鍵控(BPSK)對通訊信號作調變及解調變。此外,提出時間反轉法(TRM)降低多重路徑的影響,進而減少通訊符號間之干擾(ISI),隨時間變化的條件下。最後利用位元誤差率(BER)對不同參數作討論,並比較使用TRM及非使用TRM流程之間的通信性能差異。模擬結果發現TRM可有效降低由多重路徑效應所產生的誤碼率,並克服微小時變多徑條件下之通道影響。
In the underwater communication testing platform, the interactions between acoustic signals and boundaries may give the multipath effects. The wave effect and transducer motion cause the time variability which makes the frequencies dispersive or amplitude variation and arrival time lag variation (ATLV) in the channel. These two effects became a serious problem which will induce severe inter-symbol interference (ISI) in the received signal. In this paper, the channel boundary interactions were simulated using image method and random analysis was conducted to represent the time varying multipath condition in the channel impulse response (CIR). The ATLV and amplitude variation was determined by oscillations, wave height and relative velocity Doppler effects (RVD) of the transducer. Binary Phase Shift Keying (BPSK) was used to modulate and demodulate the signal. Furthermore, time reversal mirror (TRM) was proposed to focus energy thus mitigating the effects of the multipath dispersion and minimizing the Inter-symbol Interference (ISI) of time varying condition. Bit error rates (BER) were evaluated with compared the communications performances between using TRM and Non-TRM processes. The simulation results show that TRM is effective to reduce the BER from multipath effect and overcomes slow time varying multipath condition.
中文摘要 I
ABSTRACT II
ACKNOWEDGEMENTS III
CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURE XII

CHAPTER I
INTRODUCTION 1
1.1 Background 1
1.2 Motivation 4
1.3 Chapter Outline 5

CHAPTER II
UNDERWATER COMMUNICATION THEORY 6
2.1 Underwater Communication Channels 6
2.2 Time Varying Channel 9
2.2.1 Delay Spreading 9
2.2.2 Doppler Spreading 10
2.2.3 Time Coherence 14
2.3 Literature Study of Channel Modeling 16

CHAPTER III
SIMULATION THEORY 21
3.1 Image Method 21
3.1.1 Mathematical Operation 22
3.2 Time Reversal Mirror 25
3.2.1 Mathematical Operation 25
3.3 Modulation and Demodulation 26
3.3.1 Binary Phase Shift Keying (BPSK) 27

CHAPTER IV
SIMULATION ANALYSIS 32
4.1 Simulation Setting 32
4.2 Stationary Channel Condition 36
4.3 Case 1: Wave Height variation Doppler Effect 44
4.3.1 Wave Height Variation Doppler Effect 30 m Communication 45
4.3.2 Wave Height Variation Doppler Effect 50 m Communication 49
4.3.3 Wave Height Variation Doppler Effect 100 m Communication 54
4.3.4 Wave Height Variation Doppler Effect BER Analysis 59
4.4 Case 2: Relative Velocity Doppler Effect (RVD) 63
4.4.1 Relative Velocity Doppler Effect 30 m Communication 64
4.4.2 Relative Velocity Doppler Effect 50 m Communication 67
4.4.3 Relative Velocity Doppler Effect 100 m Communication 70
4.4.4 Relative Velocity Doppler Effect BER Analysis 73
4.5 Case 3: Arrival Time Lag Variation (ATLV) 76
4.5.1 Arrival Time Lag Variation 30 m Communication 77
4.5.2 Arrival Time Lag Variation 50 m Communication 80
4.5.3 Arrival Time Lag Variation 100 m Communication 83
4.5.4 Arrival Time Lag Variation BER Analysis 86

CHAPTER V
CONCLUSION AND FUTURE WORKS 89
5.1 Conclusion 89
5.2 Future Works 89
REFERENCES 90
APPENDIX 94

[1]. M. Citree, S. Shahabudeen and L. Freitag, M. Stojanovic, “Recent advances in underwater acoustic communication & networking, IEEE J. Ocean. Eng., pp. 1-10, 2008
[2]. R. P. Trujillo, “Interference cancellation and network coding for underwater communication systems, Department of Telecomunication Technology, Aalborg University, Denmark, 2010.
[3]. M. Stojanovic, “Recent advances in high-speed underwater acoustic communications, IEEE J. Ocean. Eng., Vol.21, No.2, April, 1996.
[4]. P. S. Duke, “Direct-sequence spread-spectrum modulation for utility packet transmission in underwater acoustic communication networks, Naval Post Gradute School, Monterey-California, September 2002.
[5]. M. Citree, J. Potter and O. S. Heng, “Underwater acoustic channel characterization for medium-range shallow water communications, IEEE J. Ocean. Eng., pp. 04, 2004.
[6]. M. Citree, J. Potter and O. S. Heng, “Optimal and Near-Optimal Signal Detection in Snapping Shrimp Dominated Ambient Noise, IEEE J. Ocean. Eng., Vol.31, No.2, April, 2006.
[7]. M. Stojanovic and J. Preisig, “Underwater acoustic communication channels: propagation models and statistical characterization, IEEE Communication Magazine, January, 2009.
[8]. R. E. Williams and H. F. Battestin, “Coherent recombination of acoustic multipath signals propagated in the deep sea ocean, J. Acoust. Soc. Am., vol.50, pp.1433-1442, 1971.
[9]. M. Citree, “ A high frequency warm shallow water acoustic communications channel model and measurements ,J. Acoust. Soc. Am., vol. 122, pp. 25–80, 2007.
[10]. T. B. Aik, Q.S. Sen, Z. Nan, “Characterization of Multipath Acoustic Channels in very shallow waters for communications, DSO National Laboratories, Singapore.
[11]. T. H. Eggen, “Underwater acoustic communication over Doppler spread channels, MIT/WHOI, 97-25, June, 1997.
[12]. D. R. Jackson and D.R Dowling, “Phase conjugation in underwater acoustic,J. Acoust. Soc. Am., vol. 89, pp. 171–181, 1991.
[13]. M. R. Dungan and D.R Dowling, “Computed narrow-band time reversing array retrofocusing in a dynamic shallow ocean, J. Acoust. Soc. Am., vol. 107, pp. 3101–3112, 2000.
[14]. J. S. Kim, H.C. Song and W.A. Kupperman, “Adaptive Time Reversal Mirror, J. Acoust. Soc. Am., vol. 109, pp. 1817–1825, 2001.
[15]. H.C. Song, P. Roux, W.S. Hodgkiss, W.A. Kupperman, T. Akal and M. Stevenson, “Multiple-input-multiple output coherent time reversal communications in a shallow water acoustic channel, IEEE J. Ocean. Eng., Vol.31, No.1, January, 2006.
[16]. T. C. Yang, “Temporal Resolutions of Time-reversed and Passive-phase Conjugation for Underwater Acoustic Communications-II: The effect of source motion, J. Acoust. Soc. Am., vol. 112, no. 5, p. 2362, Nov.2000.
[17]. T. C. Yang, “Temporal Resolutions of Time-reversed and Passive-phase Conjugation for Underwater Acoustic Communications, IEEE J. Ocean. Eng., vol. 28, pp. 229–245, 2003.
[18]. T. C. Yang, “Correlation based decision feedback equalizer for underwater acoustic communications, IEEE J. Ocean. Eng., vol. 30, No. 4, October, 2003.
[19]. L.M. Brekhovskikh and Yu. P. Lysanov, (2001), “Fundamental of ocean acoustics, 3rd ed. Springer-Verlag, New Tork, USA.
[20]. A. Falahati, B. Woodward and S.C. Bateman, “Underwater acoustic channel models for 4800 b/s QPSK signals, IEEE J. Ocean. Eng., vol. 16, No. 1, January, 1991.
[21]. Polytechnic University, (2005), “Multipath and Doppler effects and Models, (bbs.ustb), Available: http://bbs.ustb.edu.cn/bbsanc.(Accessed: 2012, July 01).
[22]. D. B. Kilfoyle, A.B. Baggeroer, “The state of the art in underwater acoustic telemetry, IEEE J. Ocean. Eng., vol. 25, No. 1, January, 2000.
[23]. B. C. Kim and I.T. Lu, “Parameter study of OFDM underwater communication system, J. Acoust. Soc. Am., vol. 8, pp. 7803–6551, 2000.
[24]. K. P. Prasanth, “Modeling and Simulation of an Underwater Acoustic Communication Channel, Master Thesis, University of Applied Sciences, Bremen-Germany.
[25]. G. V. Frisk, (1994) “Ocean and Seabed Acoustics: A theory of wave propagation, Prentice Hall, New Jersey, USA.
[26]. B. H. Wu, “Research of microphone array signal processing to audio signal separation and sound field reconstruction, Dept. of. System and Naval Mechatronic Engineering, NCKU, 2010.
[27]. R. E. Ziemer and W.H. Tranter. (2010), “Principles of communications: Systems-Modulation and Noise, 6th ed. John Wiley & Sons, Asia.
[28].“Phase shift Keying, (2012, June 21), (Wikipedia Free Encyclopedia), Available: http://en.wikipedia.org/wiki/Phase-shift_keying, (Accessed: 2012, May 07).
[29]. “Phase shift keying modulation on mac“, (Engineering.mq), Available: http://engineering.mq.edu.au/~cl/files_pdf/elec321/lect_mpsk.pdf, (Accessed: 2012, May 07).
[30]. “BPSK modulation and demodulation“, (Gaussianwaves), Available: http://engineering.mq.edu.au/~cl/files_pdf/elec321/lect_mpsk.pdf, (Accessed: 2012, May 07).
[31]. S. Khrisna. (2007, August 05), “Bit Error Rate (BER) for BPSK Modulation“, (DSPlog),Available:http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/, (Accessed: 2012, May 07).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top