跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林清國
研究生(外文):Ching-KuoLin
論文名稱:高溫超導發電機之最佳化設計
論文名稱(外文):The Optimum Design of High Temperature Superconductor Generator
指導教授:謝旻甫
指導教授(外文):Min-Fu Hsieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:離岸型風力發電高溫超導發電機永久電流開關
外文關鍵詞:HTSGoffshore wind turbinePersistent Current Switch
相關次數:
  • 被引用被引用:1
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
隨著各國於再生能源開發之拓展,風力發電機之發電量需求愈來愈高。然而,傳統發電機受限於永久磁鐵之磁場強度以及導磁性材料之飽和磁場,使得其功率密度無法提高,導致發電機之體積龐大,必須藉由增速齒輪以增加發電機之轉速達到縮小體積的目的。離岸型大型風力發電系統因轉速極低,使得此現象更為明顯,此乃一般發電機之劣勢。
高溫超導線材於超導狀態下為零電阻,且可乘載之電流密度為銅線之數十倍甚至百倍,故此材料應用於發電機上將可提高磁場強度,進而縮小發電機之體積與重量。然而高溫超導線材目前之售價乃相當昂貴,故減少超導線材使用量以節省超導發電機之製造成本至為重要,乃是高溫超導發電機商用化之關鍵。本論文針對上述目標,利用電磁模擬軟體與粒子群演算法尋找最合適之設計參數,設計應用於5 MW之離岸型直驅式風力發電系統之高溫超導發電機。
此外,由於高溫超導發電機是一個包含電磁、結構與熱傳等複雜的系統,於技術與經費不足的情況下尚難以完成高溫超導發電機整體設計與製作。故本文先行研究超導線圈之電流輸入方法,以作為未來設計之參考。

The demand for the high capacity generators applied to renewable energy systems, such as wind turbines, has been significantly increased. The power density of conventional generators is essentially limited by the magnetic intensity provided by permanent magnets and the saturation of the ferromagnetic materials. Thus, gearboxes become necessary to increase the generator speed and reduce the volume. Consequently, this would be the drawbacks for high power applications (e.g., offshore wind turbines) in terms of manufacturing, maintenance and cost.
High Temperature Superconducting (HTS) tapes has zero resistance below certain temperature. The current density of HTS tapes can be much higher than copper wires. Therefore, the magnetic field strength can be significantly enhanced if the HTS tapes are used to replace permanent magnets in the generator. This would then reduce the volume and weight of the generator. However, the cost for HTS tapes is very high and the cost reduction of HTS generator (HTSG) can be achieved by decreasing the amount of HTS tapes used while maintain the generator performance. Finite element simulations and Particle Swarm Optimization are used in this thesis to determine the optimum design of a 5 MW offshore wind turbine system.
The research problem in HTSG includes electromagnetics, structure and heat transfer and this is essentially multiphysical. Thus, it is difficult to accomplish the full design and manufacture of HTSG in the work of this thesis. Instead, this thesis presents a current input system for HTS tapes using persistent current switch (PCS) as the reference for future design.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
符號表 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 本文架構 6
第二章 研究背景 7
2.1超導線材簡介 7
2.2超導線圈電流輸入系統 10
2.3超導電機發展概況 18
2.4超導發電機架構 24
第三章 超導電機設計 32
3.1風力發電系統之葉片規格 32
3.2超導發電機設計流程 35
3.3繞組設計 40
3.4有限元素軟體模擬流程 43
3.5模擬結果與分析 45
第四章 超導發電機之最佳化分析 58
4.1最佳化演算法 58
4.2最佳化分析 63
第五章 結論與建議 70
參考文獻 72

[1]World Wind Energy Association, “World Wind Energy Report 2010, World Wind Energy Association, April 2011.
[2]Lewis C., Müller J., “A Direct Drive Wind Turbine HTS Generator, IEEE Power Engineering Society General Meeting, pp. 1–8, June 2007.
[3]Exportinitiative Inc., “http://www.exportinitiative.de, Exportinitiative Inc., 2009.
[4]H. Li, Z. Chen and H. Polinder, “Optimization of Multibrid Permanent Magnet Wind Generator Systems, IEEE Transactions on Energy Conversion, Vol. 24, No. 1, pp. 82-92, March 2009.
[5]C. Lewis, “The Advanced Induction Motor, IEEE Power Engineering Society Summer Meeting, pp. 250-253, 2002.
[6]S. Fukui, J. Ogawa, T. Sato, O. Tsukamoto, N. Kashima and S. Nagaya, “Study of 10 MW-Class Wind Turbine Synchronous Generators With HTS Field Windings, IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, pp. 1151-1154, June 2011.
[7]G. Snitchler, B. Gamble, C. King and P. Winn, “10 MW Class Superconducting Wind Turbine Generators, IEEE Transactions on Applied Superconductivity, Vol. 21, pp. 1089-1092, June 2011.
[8]行政院科學委員會,http://web1.nsc.gov.tw/,行政院科學委員會,2012.
[9]Superpower Inc., “Second-Generation High Temperature Super- conducting Wire Specifications, Superpower Inc., 2010.
[10]C.Y. Lee, J. Kim, Y.J. Han, B. Kang, Y.D. Chung, Y.S. Yoon, S.Y. Chu, Y.J. Hwang, H.C. Jo, J.Y. Jang and T.K. Ko, “Characteristics of Persistent-Current Mode of HTS Coil on Superconducting electro- magnet, Physical C:Superconductivity and its Applications, Vol. 471, pp. 1424-1427, 2011.
[11]I. Sasha, G. Carl, M. Philippe, M. Rainer and S. Robert, “Flux Pump Excited Double-Helix Rotor for Use in Synchronous Machines, IEEE Transactions on Applied Superconductivity, Vol. 18, No. 2, pp. 693- 696, June 2008.
[12]C. J. Hyun, E. Y. Seong, J. K. Young, S. C. Ki, Y. J. Jae, S. Y. Yong, D. C. Yoon, M. K. Ho and K. K. Tae, “Experimental Analysis of Flux Pump for Compensating Current Decay in the Persistent Current Mode Using HTS Magnet, IEEE Transactions on Applied Super- conductivity, Vol. 20, pp. 1693-1696, June 2010.
[13]J. Jr. Smith, “Overview of the development of superconducting synchronous generators, IEEE Transactions on Magnetics, Vol. 19, pp. 522–528, 1983.
[14]P. N. Barnes, M. D. Sumption and G. L. Rhoads, “Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings, Elsevier Ltd, Cryogenics, Vol. 45, pp. 670-686, 2005.
[15]G. Snitchler, B. Gamble and S. Kalsi, “The Performance of a 5 MW High Temperature Superconducting Ship Propulsion Motor, IEEE Transactions on Applied Superconductivity, Vol. 15, pp. 2206–2209, June 2005.
[16]G. Klaus, W. Nick, H.-W. Neumuller, G. Nerowski and W. McCown, “Advances in the Development of Synchronous Machines with High-Temperature Superconducting Field Winding at Siemens AG, IEEE Power Engineering Society General Meeting, 2006.
[17]M.K. Al-Mosawi, C. Beduz and Y. Yang, “Construction of a 100 kVA High Temperature Superconducting Synchronous Generator, IEEE Transactions on Applied Superconductivity, Vol. 15, pp. 2182-2185, 2005.
[18]G. Klaus, M. Wilke, J. Frauenhofer, W. Nick and H.-W. Neumuller, “Design Challenges and Benefits of HTS Synchronous Machines, IEEE Power Engineering Society General Meeting, pp. 1-8, 2007.
[19]M.K. Al-Mosawi, K. Goddard, C. Beduz and Y. Yang, “Coreless HTS Synchronous Generator Operating at Liquid Nitrogen Temperatures, IEEE Transactions on Applied Superconductivity, Vol. 17, pp. 1599- 1602, 2007.
[20]Y. K. Kwon, H. M. Kim, S. K. Baik, E. Y. Lee, J. D. Lee, Y. C. Kim, S. H. Lee, J. P. Hong, Y. S. Jo and K. S. Ryu, “Performance test of a 1 MW class HTS synchronous motor for industrial application, Elsevier Science by Physics C: Superconductivity, Vol. 468, pp. 2081-2086, 15 September 2008.
[21]K. S. Ship, K. F. Goddard and J. K. Sykulski, “Field Optimisation In A Synchronous Generator With High Temperature Superconducting Field Winding And Magnetic Core, IEE Proceedings-Science Measurement and Technology, Vo1. 149, pp. 194-198, September 2002.
[22]K.F. Goddard, B. Lukasik and J.K. Sykulski, “Alternative Designs of High Temperature Superconducting Synchronous Generators, IEEE Transactions on Applied Superconductivity, Vol. 19, pp. 3805-3811, 2009.
[23]S. Kalsi, “A Small-size Superconducting Generator Concept, IEEE International Electric Machines and Drives Conference, pp. 998-1003, 2001.
[24]M.R. Quddes, M. Sekino, H. Ohsaki, N. Kashima and S. Nagaya, “Electromagnetic Design Study of Transverse Flux Enhanced Type Superconducting Wind Turbine Generators, IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, pp. 1101-1104, June 2011.
[25]M.R. Quddes, M. Sekino and H. Ohsaki, “Electromagnetic design study of 10 MW-class wind turbine generators using circular super- conducting field coils, International Conference on Electrical Machines and Systems, pp. 1–6, August 2011.
[26]T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook, Wiley, ISBN 0471489972, 2001.
[27]AREVA Wind GmbH Inc., “M5000 Technical data, AREVA Wind GmbH Inc., 2010.
[28]D. Hanselman, “Brushless Permanent Motor Design, McGraw Hill, Second Edition, 1994.
[29]劉皓翔,應用多目標粒子群演算法於船舶球形艏最佳化設計之研究,國立成功大學系統及船舶機電工程學系,碩士論文,2012。
[30]J. Kennedy and R. Eberhart, “Particle Swarm Optimization, IEEE International Conference on Neural Networks, pp. 1942–1948, 1995.
[31]Y. Shi and R. Eberhart, “A modified particle swarm optimizer, IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73, 1998.
[32]K. Parsopoulos and M. Vrahatis, “Particle Swarm Optimization Method in Multiobjective Problems, the ACM Symposium on Applied Computing, pp. 603–607, 2002.
[33]Y. Jin, T. Okabe and B. Sendhoff, “Adapting Weighted Aggregation for Multiobjective Evolution Strategies, Lecture Notes in Computer Science, Vol. 1993, pp. 96–110, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top