跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王淳賢
研究生(外文):Chun-HsienWang
論文名稱:反算設計問題於平行流系統裝置形狀最佳化之研究
論文名稱(外文):A Research on Inverse Design Problems in Estimating the Optimal Shapes for Parallel Flow System Devices
指導教授:黃正弘黃正弘引用關係
指導教授(外文):Cheng-Hung Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:平行流熱交換器板鰭式微裝置流量分佈最佳化設計
外文關鍵詞:parallel flow heat exchangerplate-fin microdeviceflow distributionoptimization design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在於應用拉凡格式法(Levenberg-Marquardt Method)配合套裝軟體CFD-ACE+,來探討三維反算問題於平行流系統裝置的形狀最佳化設計之研究。平行流裝置在不同領域的工程上有不同的應用,因此研究主題可分為以下兩個部分:
在本文第二章中,吾人以改善密集型平行流熱交換器之流量分佈為目標,分別測試了六個範例,結果顯示,不論Z型或U型裝置,最佳化後所有分支管中的流量皆達到均勻一致的目標,且可在降低不均勻度的同時限制總壓降不會大幅增加。而這個結果同時也暗示了在求解反算問題時,若限制條件不足,程式由不同的初始猜值可能只會求得局部的最佳解。另外,透過靈敏性分析的技巧,於節省了可觀的計算時間後仍能求得一可接受的最佳化模型。
而在第三章中,吾人以改善板鰭式微裝置的系統性能為目標,分別測試了四個範例,結果顯示,以三次曲線建構集管形狀的微裝置比起以線性直線建構集管形狀的微裝置有較佳的性能,而對於合理的期望面積,程式也能夠求出符合條件的最佳化模型。這證明了拉凡格式法能有效地將系統不均勻度與出入口集管面積同時極小化,並減少微裝置的無效體積、縮小空間時間與窄化滯留時間分佈。

In this thesis, three-dimensional inverse design problems in estimating the optimal shapes for parallel flow system devices is considered by utilizing the Levenberg-Marquardt Method (LMM) and the commercial code CFD-ACE+. There are two themes in this thesis:
In chaper two, the main concern is to improve the flow distribution for compact parallel flow heat exchanger. In this work, six different optimization design problems are examined. It is concluded that the flow rates in the optimal design is nearly uniform regardless of Z-type or U-type heat exchanger, and furthermore the LMM restricts the total pressure drop not to increase greatly. The results also reveal that if constraints are insufficient, using different initial guesses may obtain the localized solution for the heat exchanger. Additionally, the sensitivity analysis technique is then employed to shorten respectable computational time and still yield an acceptable module.
In chaper three, in order to improve the system performance for catalytic plate-fin microdevice, four different optimization design problems are examined. It is concluded that when we applying two third-order-polynomial functions to construct the shapes of manifolds, the designed plate-fin microdevice always has better performance than the design with linear lines while generating the shapes of manifolds. Moreover, any reasonable desired areas of manifolds can be assigned and the corresponding optimal devices can be obtained. The conclusions above demonstrate that the LMM is able to minimize the system non-uniformity and manifold areas simuteneously. Consequently, this method reduces the death volume, shortens space time as well as narrows the residence time distribution.

摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VII
表 目 錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究方法 3
第二章 平行流熱交換器設計參數最佳化之研究 7
2-1 研究動機與目的 7
2-2 文獻回顧 7
2-2.1 流量分佈的概念 8
2-2.2 集管形狀 9
2-2.3 流向配置 9
2-2.4 入口效應 10
2-2.5 流道面積比 10
2-2.6 改善方法 11
2-2.7 拉凡格式法於最佳化設計之應用 11
2-3 基本假設 12
2-4 直接解問題 12
2-4.1 統御方程式 12
2-4.2 紊流模式 14
2-4.3 模型建立與網格產生 16
2-4.4 邊界條件 17
2-5 最佳化設計問題 18
2-5.1 目標函數 18
2-5.2 拉凡格式法之極小化過程 20
2-6 數值計算流程 22
2-7 結果與討論 23
2-7.1 直接解問題分析 23
2-7.2 最佳化問題分析 25
第三章 板鰭式微裝置集管形狀最佳化之研究 62
3-1 研究動機與目的 62
3-2 文獻回顧 63
3-3 基本假設 66
3-4 直接解問題 66
3-4.1 統御方程式 66
3-4.2 模型建立與網格產生 67
3-4.3 邊界條件 67
3-5 形狀設計問題 72
3-5.1 目標函數 72
3-5.2 拉凡格式法之極小化過程 74
3-6 數值計算流程 76
3-7 結果與討論 78
3-7.1 直接解問題分析 78
3-7.2 最佳化問題分析 79
第四章 結論 91
參考文獻 93


[1] J. P. Chiou, “The effect of nonuniform fluid flow distribution on the thermal performance of solar collector, Solar Energy, Vol. 29 (1982), pp. 487–502.
[2] J. S. McNown, “Mechanics of Manifold Flow, Transactions of The Asce, Vol. 119 (1954), pp. 1103–1142.
[3] J. C. K. Tong, E. M. Sparrow and J. P. Abraham, “Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system, Applied Thermal Engineering, Vol.29 (2009), pp. 3552–3560.
[4] S. Kim, E. Choi and Y. I. Cho, “The effect of header shapes on the flow distribution in a manifold for electronic packaging applications, International Communications in Heat and Mass Transfer, Vol. 22 (1995), pp. 329–341.
[5] A. B. Datta and A. K. Majumdar, “Flow Distribution in Parallel and Reverse Flow Manifolds, Journal of Heat and Fluid Flow, Vol. 2, No. 4 (1980), pp. 253–262.
[6] A. K. Majumdar, “Mathematical Modeling of Flows in Dividing and Combining Flow Manifold, Applied Mathematical Modeling, Vol. 4 (1980), pp. 424–432.
[7] R. A. Bajura, “A Model for Flow Distribution in Manifolds, Journal of Engineering for Power, Transactions of the Asme, January (1971), pp. 7–12.
[8] S. H. Choi, S.Shin and Y. I. Cho, “The effect of area ratio on the flow distribution in liquid cooling module manifolds for electronic packaging, International Communications in Heat and Mass Transfer, Vol. 20 (1993), pp. 221–234.
[9] S. H. Choi, S.Shin and Y. I. Cho, “The effect of Reynolds number and width ratio on the flow distribution of liquid cooling module manifolds for electronic packaging, International Communications in Heat and Mass Transfer, Vol. 20 (1993), pp. 607–617.
[10] D. H. Lee, J. M. Jung, J. H. Ha and Y. I. Cho, “Improvement of heat transfer with perforated circular holes in finned tubes of air-cooled heat exchanger, International Communications in Heat and Mass Transfer, Vol. 39 (2012), pp. 161–166.
[11] C.C. Wang, “Heat Transfer Design, in Chinese. Wunan, Taipei, 2007.
[12] R. A. Bajura, V. F. Lerose, and L. E. Williams, “Fluid Distribution in Combining, Dividing and Reverse Flow Manifolds, Asme-Ieee Joint Power Generation Conference (1973).
[13] R. A. Bajura, and E. H. Jones, “Flow Distribution Manifolds, Journal of Fluids Engineering, Transactions of the Asme, Vol. 98 (1976), pp. 654666.
[14] P. I. Shen, “The Effect Of Friction on Flow Distribution in Dividing and Combining Flow Manifolds, Journal of Fluids Engineering, Vol. 114 (1992), pp. 112123.
[15] J. Wen and Y. Li, “Study of flow distribution and its improvement on the header of plate-fin heat exchanger, Cryogenics, Vol. 44 (2004), pp.823–831.
[16] C. C. Wang, K. S. Yang , J. S. Tsai and I. Y. Chen, “Characteristics of flow distribution in compact parallel flow heat exchangers, part I : Typical inlet header, Applied Thermal Engineerin, Vol. 31 (2011), pp. 3226–3234.
[17] C. C. Wang, K. S. Yang , J. S. Tsai and I. Y. Chen, “Characteristics of flow distribution in compact parallel flow heat exchangers, part II : Modified inlet header, Applied Thermal Engineering, Vol. 31 (2011), pp. 3235–3242.
[18] D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, Vol.11 (1963), No. 2, pp. 431–441.
[19] C. H. Huang and C. T. Wuchiu, “A shape design problem in determining the interfacial surface of two bodies based on the desired system heat flux, International Communications in Heat and Mass Transfer, Vol.54 (2011), No. 54, pp. 2514–2524.
[20] C. H. Huang and C. W. Gau, “An optimal design for axial-flow fan blade: theoretical and experimental studies, Journal of Mechanical Science and Technology, Vol. 26 (2012), No. 2, pp. 427–436.
[21] B. E. Launder, and D. B. Spalding, “The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3 (1974), pp. 269–289.
[22] D. B. Spalding, B. E. Launder, A. P. Morse and G. Maples, “Combustion of hydrogen-air jets in local chemical equilibrium(a guide to the CHARNAL computer program), NASA Contractor Reports, CR–2407 (1974).
[23] J. P. van Doormal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, Vol. 7 (1984), No. 2, pp. 147–163.
[24] O. Nagler, M. Trost, B. Hillerich and F. Kozlowski, “Efficient design and optimization of MEMS by integrating commercial simulation tools, Sensors and Actuators A, Vol. 66 (1998), pp. 15–20.
[25] P. Schneider, A. Schneider and P. Schwarz, “A modular approach for simulation-based optimization of MEMS, Microelectronics Journal, Vol. 33 (2002), pp. 29–38.
[26] A. Rasmussen, C. Marvriplis, M.E. Zaghloul, O. Mikulchenko and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor, Sensors and Actuators A, Vol. 88 (2001), pp. 121–132.
[27] H. Herwig and O. Hausner, “Critical view on “new results in micro-fluid mechanics : an example, International Communications in Heat and Mass Transfer , Vol.46 (2003), pp. 935–937.
[28] A. J. Abrahamse, A. van der Padt, R. M. Boom and W. B. C. de Heij, “Process fundamental of membrane emulsification: simulation with CFD, AIChE Journal, Vol. 47 (2001), No. 6, pp. 1285–1291.
[29] P.D.I. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, S.Y.F. Wong and X. Zhang, “Micro reactors: principles and applications in organic synthesis, Tetrahedron, Vol. 58 (2002), pp. 4735-4757.
[30] S. Hasebe, “Design and operation of micro-chemical plants–bridging the gap between nano, micro and macro technologies, Computers and Chemical Engineering, Vol. 29 (2004), pp. 57–64.
[31] O. Tonomura, S. Tanaka, M. Noda, M. Kano, S. Hasebe and I. Hashimoto, “CFD-based optimal design of manifold in plate-fin microdevices, Chemical Engineering Journal, Vol. 101 (2004), pp. 397–402.
[32] J. M. Commenge, L. Falk, J. P. Corriou and M. Matlosz “Optimal Design for Flow Uniformity in Microchannel Reactors, AIChE Journal, Vol. 48 (2002), No. 2, pp. 345–358.
[33] E. R. Delsman, A. Pierik, M. H. J. M. De Croon, G. J. Kramer and J. C. Schouten, “Microchannel plate geometry optimization for even flow Distribution at high flow rates, Chemical Engineering Research and Design, Vol. 82 (2004), pp.267–673.
[34] P. Minqiang, Z. Dehuai, T. Yong and C. Dongqing, “CFD-based Study of Velocity Distribution among Multiple Parallel Microchannels, Journal of Computers, Vol. 4 (2009), No. 11, pp.1133–1138.
[35] J. Wen and Y. Li, “Study of flow distribution and its improvement on the header of plate-fin heat exchanger, Cryogenics, Vol. 44 (2004), pp. 823–831.
[36] J. Wen, Y. Li, A. Zhou and K. Zhang,, “An experimental and numerical investigation of flow patternsin the entrance of plate-fin heat exchanger, International Communications in Heat and Mass Transfer, Vol. 49 (2006), pp. 1667–1678.
[37] A. Jiao, R. Zhang and S. Jeong, “Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger, Applied Thermal Engineering, Vol. 23 (2003), pp. 1235-1246.
[38] A. Jiao, Y. Li, C. Chen and R. Zhang, “Experimental Investigation on Fluid Flow Maldistribution in Plate-Fin Heat Exchangers, Heat Transfer Engineering, Vol. 24 (2003), No. 4, pp. 25-31.
[39] E.V. Rebrov, S.A. Duinkerke, M.H.J.M. de Croon and J.C. Schouten, “Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation, Chemical Engineering Journal, Vol. 93 (2003) pp. 201–216.
[40] E.V. Rebrov, J. C. Schouten and M. H. J. M. de Croon, “ Single-phase fluid flow distribution and heat transfer in microstructured reactors, Chemical Engineering Science, Vol. 66(2011), pp. 1374–1393.
[41] M. Kanoa, T. Fujioka, O. Tonomura, S. Hasebe and M. Noda, “Data-based and model-based blockage diagnosis for stacked microchemical processes, Chemical Engineering Science, Vol. 62(2007), pp. 1073–1980.
[42] O. Tonomura, T. Tominari, M. Kano and S. Hasebe, “Operation policy for micro chemical plants with external numbering-up structure, Chemical Engineering Journal, Vol. 135S (2008), pp. S131–S137.
[43] CFD-ACE+ user’s manual, ESI-CFD Inc., 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top