跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳展易
研究生(外文):Zhan-YiWu
論文名稱:柴油/生質柴油混摻引擎於進氣處引入氫氣之燃燒特性與污染物研究
論文名稱(外文):Investigation on Combustion Characteristics and Emissions of a Diesel/Biodiesel Blended Engine with Port-inducting Hydrogen
指導教授:吳鴻文吳鴻文引用關係
指導教授(外文):Horng-Wen Wu
學位類別:博士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:138
中文關鍵詞:氫氣氫氣能量分配率田口法柴油/生質柴油廢氣再循環電子控制單元
外文關鍵詞:hydrogenhydrogen-energy-share ratioTaguchi methoddiesel/biodieselexhaust gas recirculationelectric control unit
相關次數:
  • 被引用被引用:2
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
由於氫氣對引擎是一種乾淨的替代能源,因此本論文進行柴油/氫氣雙燃料引擎之燃燒特性與污染物的研究。研究分為三部分:第一部分是使用能量分配法探討柴油引擎進氣口導入氫氣,且在不同比例之EGR與不同負載下的燃燒特性與污染物。第二部分是透過田口法以獲得低BSFC,NOX及smoke由電子控制單元控制噴射器於進氣口噴氫的最佳氫氣噴射角、氫氣比率及EGR比率等運轉因子,並且將獲得的最佳組合與原始柴油引擎的燃燒性能與污染物做比較。第三部分仍是透過田口法以獲得高制動熱效率,低比制動燃油消耗率,NOX及smoke在柴油/生質柴油混合,並噴氫於進氣道下的最佳比例之生質柴油、氫氣及EGR比率等運轉因子。並且將獲得的最佳組合與原始柴油引擎的燃燒性能與污染物做比較。
在第一部分的研究結果指出,指示平均有效壓力的循環變異從0.9 % 到 2.8 %。在60%負載,40%EGR及20%氫氣比率下,smoke的減少率為37.7%,NOX則是59.5%。
在第二部分的研究結果指出,在此研究裡使用田口法可以節省67%的實驗時間。使用田口參數設計法所做出的預測符合95%信心水準。 在45%及60%負載下,最佳化參數組合與一般柴油引擎比較可降低14.52%的比制動燃油消耗率,60.5%的NOX以及42.28%的smoke,並且可增進如缸內壓力峰值及熱釋放率等燃燒性能。另外,因為有較低的IMEP循環變異,所以導入氫氣及EGR並不會產生不穩定的燃燒情形。
在第三部分實驗結果指出,由田口法所找到在各負荷下針對BTE,BSFC,NOX以及smoke的最佳組合為B20 (A2), 30% 氫氣 (B3) 以及40% EGR比率 (C3)。在各負荷下,由此組合所得到的燃燒性能,如制動熱效率、缸內壓力、熱釋放率等都比一般引擎的表現來得更好。此外,最佳組合可降低比制動燃油消耗率並同時抑制NOX和smoke等污染物。在60%負荷下,針對比制動燃油消耗率其減少率為25.4%,對NOX為74.1%而對smoke則為29.6%。

Considering hydrogen as a clean alternative fuel for engines, this thesis investigates the combustion characteristics and emissions in a neat diesel engine or diesel/biodiesel blended fuel engine inducting hydrogen at the inlet port. The studies are divided into three parts. The first part is to investigate the combustion and emissions of a diesel engine with port-inducting hydrogen using an energy-share method under various exhaust gas recirculation (EGR) ratios and loads. The second part is to obtain the optimal operating factors such as hydrogen injection timings, hydrogen energy-share-ratios and EGR ratios for low brake specific fuel consumption (BSFC), NOX, and smoke of a diesel engine with port-injecting hydrogen using Taguchi method, and comparing BSFC, NOX, smoke, and combustion performance between the optimized engine and baseline diesel engine. The injection timing is controlled by electric control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. Based on Taguchi method, the third part obtains the optimal operating factors such as mixed volumes of biodiesel/diesel, energy-share-ratios and EGR ratios for high brake thermal efficiency (BTE), low BSFC, NOX, and smoke for a diesel engine with diesel/biodiesel blended using hydrogen and cooled EGR at the inlet port, and also comparing the combustion performance and emissions between the optimized and baseline conditions.
In the first part, the results show that the variations of indicated mean effective pressure (IMEP) are in the range of 0.9 % to 2.8 %. The rate of decreased smoke emission is 37.6 %, and that in the reductions of NOX emission are 59.5 % for 40 % EGR ratio, 20 % added hydrogen at 60 % load.
In the second part, the optimization results from Taguchi method saves 67% experiment times in this research. The results derived from Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads, the optimum factor combination compared with the original baseline diesel engine condition reduces 14.52% for BSFC, 60.5% for NOX and 42.28% for smoke and improves combustion performance such as peak pressure in cylinder and heat release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower coefficient of variations (COV) of IMEP.
In the third part, experimental results show that the best BTE and BSFC, NOX and smoke at each load is achieved for a combination of B20 (A2), 30% hydrogen (B3) and 40% EGR ratio (C3). This combination is more suitable for obtaining various parameters that affect the combustion performance such as the BTE, cylinder pressure, and heat release rate, than those of the baseline diesel engine for various loads. In addition, the best combination reduces the BSFC and inhibits both NOX and smoke emissions. At a load of 60%, the reduction rate is 25.4% for BSFC, 74.1% for NOX and 29.6% for smoke.

Abstracts I
摘要 III
Acknowledgements V
Contents VI
List of Tables IX
List of Figures XI
Nomenclature XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.2.1 Hydrogen 2
1.2.2 Biodiesel 5
1.2.3 Taguchi method with applications to optimization of engine performances 7
1.3 Motivations and objectives 8
Chapter 2 Theoretical Background 10
2.1 Combustion theory of a diesel engine 10
2.2 Formation of emissions 12
2.2.1 Carbon monoxide and carbon dioxide 12
2.2.2 Hydrocarbons 13
2.2.3 Nitrogen oxides 14
2.2.4 Smoke 14
Chapter 3 Experimental Facilities 16
3.1 Apparatus 16
3.2 Measurement of experimental data 20
3.3 Experimental procedures 23
3.4 Measurement uncertainty 24
3.5 Taguchi method 25
3.5.1 Experiments design and quality characteristics description 27
3.5.2 Results analyzing and the optimum conditions determining 28
3.5.3 Confirmatory test using optimum conditions 30
3.5.4 Reduction percentage of quality loss 31
3.6 Methodology descriptions 33
3.6.1 Hydrogen-energy-share ratio 33
3.6.2 EGR ratio 33
3.6.3 Brake power 34
3.6.4 Brake specific fuel consumption 34
3.6.5 Brake thermal efficiency 35
3.6.6 Air/Fuel ratio and equivalence ratio 35
3.6.7 Heat release rate and ignition delay 36
3.6.8 Coefficient of variations 38
Chapter 4 Results and Discussions 39
4.1 Combustion characteristics and emissions of diesel/hydrogen mixtures by using energy-share method 39
4.1.1 Combustion characteristics 39
4.1.2 Emissions 42
4.2 Combustion characteristics and optimal factors determination using Taguchi method 45
4.2.1 Statistical Analysis 45
4.2.2 Comparison between baseline and optimized engine results 49
4.3 Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting hydrogen 52
4.3.1 Statistical Analysis 52
4.3.2 Comparison between baseline diesel engine and optimized conditions 55
Chapter 5 Conclusions and Future work 58
5.1 Conclusions 58
5.2 Future Work 62
References 64
Vita 138

[1] Heywood B., Internal combustion engine fundamentals, New York, U.S.A: McGraw-Hill Book Company, 1988.
[2] Leonard L. Vasiliev, Larisa E. Kanonchik, Yousef M. Alyousef, Advanced sorbents for thermally regulated hydrogen vessel, Appl. Thermal Eng, 2010; 30:908-916.
[3] Li Y.L., Chen H.S., Zhang X.J., Tan C.Q., Ding Y.L., Renewable energy carriers: Hydrogen or liquid air/nitrogen? Appl. Thermal Eng, 2010; 30:1985-1990.
[4] Mamdouh G. Salameh, Can renewable and unconventional energy sources bridge the global energy gap in the 21st century? Appl. Energ, 2003; 75:33-42
[5] Demuynck J., De Paepe M., Huisseune H., Sierens R., Vancoillie J., Verhelst S., Investigation of the influence of engine settings on the heat flux in a hydrogen- and methane-fueled spark ignition engine, Appl. Thermal Eng, 2011; 31:1220-1228.
[6] Kawahara E.T.N, Piao Z., Fujita S., Hydrogen combustion and exhaust emissions ignited with diesel oil in a dual fuel engine , SAE TECH Paper 2001-01-3503, 2001.
[7] Matthew F., Design of hydrogen injection system for a prechamber hydrogen-fueled internal combustion engine, thesis of Department of Mechanical and Industrial Engineering University of Toroto, 2009.
[8] Ma F.H., Wang Y.; H.Q Liu; Y. Li; J.J. Wang; S.F Ding, Effects of Hydrogen Addition on cycle-by-cycle variation in a learn burn natural gas spark-ignition engine, Int J Hydrogrn Energ, 2008; 33 :391-402.
[9] White C.M., Steeper R.R,, Lutz A.E. The hydrogen-fuelled internal combustion engine: a technical review. Int J Hydrogrn Energ, 2006; 31:1292-1305.
[10] Karim G.A, Hydrogen as a spark ignition engine fuel. J Eng Gas Turb Power, 2003; 28: 569-577.
[11] Sierens R., Verhelst S., Verstrageten S. An overview of hydrogen fuelled internal combustion engines. Proceedings International Hydrogen Energy Congress and Exhibition (IHEC) Istanbul, Turkey, 13-15, 2005
[12] Verhelst S., Wallner T., Hydrogen-fueled international combustion engines. Prog Eenerg Combust, 2009; 35: 490-527
[13] Hari Ganesh R,, Subramaniam R.P., Hydrogen fuelled spark ignition engine with electronically controlled manifold injection: an experimental study. Renew Energ, 2008; 33: 1324-1333
[14] Korakianitis T, Namasivayam A.M., Crookes RJ. Natural-gas fuelled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions, Prog Eenerg Combust, 2010; 37: 89-112
[15] Frank D., Giovanni D.L., Sergio R., Svend B., Jacques D. R., Combustion of syngas in a pressurized microturbine-like combustor: Experimental results, Appl. Energ, 2010; 87:1441-1452.
[16] Changwei J., Shuofeng W., Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance, Int J Hydrogrn Energ, 2001; 26: 55-70.
[17] Wang S., Ji C. , Zhang J., Zhang B., Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures, Energy, 2011; 36:5832-5837
[18] Yuksel F., Ceviz M.A., Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel, Energy, 2003; 28: 1069-1080
[19] Randell L. M., Zhao G., William G., Continuous hydrino thermal power system, Appl. Energ, 2011; 88:789-798
[20] Pilavachi P. A., Stephanidis S. D., Pappas V. A., Afgan N. H., Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies, Appl. Thermal Eng, 2009; 29:2228-2234
[21] Gokalp I., Lebas E., Alternative fuels for industrial gas turbines (AFTUR), Appl. Thermal Eng, 2004; 24:1655-1663
[22] Yao M., Zheng Z., Liu H., Progress and recent trends in homogeneous charge compression ignition engines, PROG ENERG COMBUST, 2009, 35:398-437
[23] Masood M, Ishrat M. M., Reddy A. S. Computational combustion and emission analysis of hydrogen-diesel blends with experimental verification. Int J Hydrogen Energy 2007; 32:2539-2547.
[24] Lee J. T., Kim Y. Y., Lee C. W., Caton J. A., An investigation of a cause of backfire and its control due to crevice volumes in a hydrogen fueled engine, Trans of ASME, 2001;123:204-210.
[25] Lee J. T., Kim Y. Y., Caton J. A. The development of a dual injection hydrogen fueled engine with high power and high efficiency. In: 2002 Fall technical conference of ASME-ICED, 8-11 September, 2002: 2-12.
[26] Das L. M., Hydrogen engine: research and development (R&D) programmes in Indian Institute of Technology (IIT), Delhi. Int J Hydrogen Energy, 2002; 27: 953-65.
[27] Mohammadi A., Shioji M., Nakai Y., Ishikura W., Tabo E., Performance and Combustion Characteristics of a Direct Injection Si Hydrogen Engine, Int J Hydrogrn Energ, 2007; 32:296-304
[28] Saravanan N., Nagarajan G., Experimental Investigation on a Di Dual Fuel Engine with Hydrogen Injection, Inj Energ Res, 2009; 33:295-308
[29] Saravanan N., Nagarajan G., Dhanasekaran C., Kalaiselvan K.M., Experimental Investigation of Hydrogen Port Fuel Injection in Di Diesel Engine, Int J Hydrogrn Energ, 2007; 32:4071-4080
[30] Saravanan N., Nagarajan G., Performance and emission studies on port injection of hydrogen with varied flow rates with diesel as an ignition source, Appl. Energ, 2010;87:2218-2229
[31] Reddy N, Ramesh A. Parametric studies for improving the performance of a jatropha oil-fuelled compression ignition engine. Renew Energ, 2006; 31: 1994-2016.
[32] Ramadhas A.S. , Jayaraj S., Muraleedharan C., Use of vegetable oils as I.C. engine fuels - a review. Renew Energ, 2004; 29:727-742.
[33] Gvidonas L, Stasys S., Performance of direct-injection off-road diesel engine on rapeseed oil. Renew Energ, 2006; 31:849-63.
[34] Bari S, Lim T. H., Yu C. W., Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine. Renew Energ, 2002; 27: 339-51.
[35] Karaosmanoglu F., Kurt G., Ozakta T., Long term CI engine test of sunflower oil. Renewable Energy, 2000; 19: 219-21.
[36] Kumar M. S., Kerihuel A., Bellettre J., Tazerout M., Experimental investigations on the use of preheated animal fat as fuel in a compression ignition engine. Renew Energ, 2005; 30:1443-56.
[37] Ghobadian B., Rahimi H., Nikbakht A. M., Najafi G., Yusaf T. F., Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew Energ, 2008; 34: 976-82.
[38] Ahouissoussi N. B. C., Wetzstein M. E. A., Comparative cost anaysis of biodiesel, compressed natural gas, methanol, and Diesel for transit bus systems. Resour. En. Economics, 1997; 20:1-15.
[39] Canakci M., Erdil A., Arcakliog˘lu E, Performance and exhaust emissions of a Biodiesel engine. Appl. Energ, 2006; 83: 594-605
[40] Ramadhas A. S., Muraleedharan C., Jayaraj S, Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew Energ, 2005; 30:1789-1800
[41] Pramanik K., Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energ, 2003; 28: 239-248.
[42] Sukumur P., Vedaraman N., Sankaranarayanan G., Boppana Bharat Ram V., Performance and emission study of mahua oil (madhuca indica oil) ethy ester in a 4-stroke natural aspirated direct injection Diesel engine, Renew Energ, 2005; 30:1269-1278.
[43] Subramanian K. A., Singal S. K., Mukesh Saxena, Sudhir Singal, Utilization of liquid biofuels in automotive diesel engines: An Indian perspective, Biomass Bioenerg, 2005; 29:65-72.
[44] Szybist J. P, Boehman A. L., McComick R. L., Taylor J. D., Evaluation of formulation of strategies to eliminate the biodiesel NOX effect, Fuel Process Technol, 2005; 86:1109-1126.
[45] Park S., Kim H., Choi B., Emission characteristics of exhaust gases and nanoparticles from a diesel engine with biodiesel-diesel blended fuel (BD20), J Mech Sci Technol, 2009; 23:2555-2564.
[46] Aydin H., Bayindir H., An experimental study on the exhaust emissions of a partially loaded compressed ignition engine fueled with biodiesel derived from cottonseed oil, Energy Sources, part A, 2010; 32:1076–1085.
[47] Korakianitis T., Namasivayam A. M., Crookes R. J., Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel, Int J Hydrogrn Energ, 2010; 35:13329-13344.
[48] Park G. J., Analytic methods for design practice, Springer, 2007.
[49] Wu H. W., Ku H. W., The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method, Appl. Energ, 2011; 88:4879-4890.
[50] Nataraj M., Arunachalam V. P., Dhandapani N., Optimizing diesel engine parameters for emission reduction using Taguchi method: Variation risk analysis approach–Part I, INDIAN J ENG MATER S, 2005; 12:169-181.
[51] Nataraj M., Arunachalam V. P., Dhandapani N., Optimizing diesel engine parameters for emission reduction using Taguchi method: Variation risk analysis approach–Part II, INDIAN J ENG MATER S, 2005; 12:505-514.
[52] Saravanan N., Nagarajan G., Sampath S., Multi response optimization of NOX emission of a stationary diesel engine, Fuel, 2010; 89:3235-3240.
[53] Ganapathy T., Murugesan K., Gakkhar R.P., Performance optimization of Jatropha biodiesel engine model using Taguchi approach, Appl. Energ, 2009; 86:2476-2486.
[54] Geo V. E., Nagarajan G., Nagalingam B., Studies on dual fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel, Int J Hydrogrn Energ, 2008; 33:6357-6367.
[55] Kubota horizontal water-cooled diesel engine, Kubota CO., http://www.engine.kubota.ne.jp
[56] Greatec Green Energy CO., Ltd, http://www.great-green.com.tw
[57] JHT Editorial Board of ASME J. Heat Transfer, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results, ASME J. Heat Transfer, 1993;115: 5-6,
[58] Ranjit K. R., A primer on the Taguchi method, Society of Manufacturing Engineers, 1990.
[59] Abd-Alla G. H., Using exhaust gas recirculation in internal combustion engines: a review, Energ Convers Manage, 2002; 43:1027-1042.
[60] Obert F. E, Internal combustion engines and air pollution, chap 2, Index Education Publishers, New York, 1973.
[61] Stone R., Introduction to Internal Combustion Engines, second edition, MacMillan Press Ltd, ISBN 0-333-55084-6 Pbk, Basingstoke, Hampshire, 1992.
[62] Cruz-Peragón F., Jiménez-Espadafor F. J., Palomar J. M., Dorado M. P., Influence of a combustion parametric model on the cyclic angular speed of internal combustion engines. Part I: setup for sensitivity analysis, 2009, Energy & Fuels, 23: 2921-2929.
[63] Shudo T., Suzuki H., Applicability of heat transfer equations to hydrogen combustion, JSAE Rev., 2002, 23: 303–308.
[64] Ferguson C. R., Internal Combustion Engine Fundamentals: Applied Thermoscience, John Wiley & Sons, Inc., 1986.
[65] Karim G. A., Al-Alousi Y. H., Some considerations of cyclic variations in spark ignition engines fuelled with gaseous fuels, SAE Paper No.840232, 1984.
[66] Bose P. K., Maji D., An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation, Int J Hydrogrn Energ, 2009; 34: 4847-4854.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊