跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭達譽
研究生(外文):Da-YuGuo
論文名稱:球面散熱鰭片對自然對流熱傳增益之研究
論文名稱(外文):Study on Heat Transfer Enhancement for Natural Convection of Dimpled Fin
指導教授:吳鴻文吳鴻文引用關係
指導教授(外文):Horng-Wen Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:三度空間自然對流熱傳增益散熱鰭片球面形狀
外文關鍵詞:three dimensionnatural convectionheat transfer enhancementheat findimple
相關次數:
  • 被引用被引用:2
  • 點閱點閱:744
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:3
本論文對於三維自然對流流經散熱鰭片的穩態流動及其熱傳現象進行數值分析。以有限體積法 (FVM,Finite Volume Method)將Navier-Stokes方程式及能量方程離散化為代數方程組,並運用解壓力耦合方程的半隱式方法(SIMPLE,semi-implicit method for pressure- linked equation)加以迭代至收斂,進而解出其速度場,壓力場與溫度場。
  首先單純探討基本散熱鰭片F1其熱傳遞現象及流場現象,雷利數(Rayleigh number)分別設定四種數值,普朗特數(Prandtl number)則保持為定值0.71,然後考慮具球面形狀(dimple)於散熱鰭片表面,其中不同球面形狀迎風角度,分別為30°、25°與15°,並考慮球面形狀分布與不同鰭片密度。探討上述因素對於局部紐賽數、平均紐賽數、速度場及溫度場的影響與散熱鰭片之熱傳增益效果。由本論文之結果可知,鰭片密度對於散熱效果為一重要參數。對於較大鰭片密度需搭配迎風角度15°之球面形狀散熱效果比較明顯,然而對於較小鰭片密度者則須搭配迎風角度30°與25°之球面形狀散熱效果比較顯著。
This thesis used finite volume method (FVM) to analyze steady-state flow and heat transfer in three-dimensional natural convection with heat fins. Using finite volume method discretes the Navier-Stokes equations and Energy Equation and then constructs a system of algebraic equations. It can be solved by semi-implicit method for pressure-linked equation (SIMPLE), and the solution must be iterated to convergence within each step to obtain the velocity field, pressure field, and temperature field.
  First, this thesis discussed flow and heat transfer phenomenon simply for the basic heat fin(F1), as the Rayleigh number are set four numbers, and the Prandtl number keep a constant value as 0.71, and then for added the dimples on heat fin surfaces. On one hand this thesis considered the upwind degrees of dimples as 30°, 25°, and 15°, and on the other hand also considered the distribution of dimples and different density of heat fins. This thesis discussed the influence of above-mentioned factors on local Nusselt number, average Nusselt number, velocity field, temperature field, and the heat transfer enhancement of heat fins. The results show that different density of heat fins is an important factor. The upwind degree of dimples is 15° that has better heat dissipation ability for a higher density of heat fin. However, the upwind degrees of dimples are 30° and 25° that have better heat dissipation ability for a lower density of heat fin.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XVI
第一章 前言 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 研究目的 7
第二章 模擬方法與幾何架構 9
2-1 原理 9
2-2 數學方程式 9
2-3 有限體積法 12
2-4 離散格式 13
2-4-1 Second Order Upwind 13
2-4-2 Least Squares Cell Based 14
2-4-3 動量方程的離散 15

2-4-4 能量方程的離散 16
2-5 流場計算 16
2-5-1 SIMPLE法 17
2-5-2 速度修正方程 17
2-5-3 壓力修正方程 19
2-5-4 計算流程 19
2-5-5 鬆弛因子 19
2-5-6 收斂條件 20
2-6 網格 20
2-7 幾何架構 20
第三章 結果與討論 28
3-1 網格獨立測試 29
3-2 本文模擬結果與參考文獻之比較 30
3-3 各形狀下,不同雷利數對散熱鰭片流場及局部紐賽數的影響 31
3-3-1 13片之基本散熱鰭片F1 31
3-3-2 13片之散熱鰭片F2、F3 33
3-3-3 13片之散熱鰭片F4 35
3-3-4 9片之散熱鰭片F5 36
3-3-5 9片與7片之散熱鰭片F6、F7 37

3-4 各幾何形狀散熱鰭片平均紐賽數的影響 38
第四章 結論與建議 41
4-1 結論 41
4-2 建議 43
參考文獻 124

1.Zografos, A.I., and Sunderland, J.E., “Natural convection from pin fin arrays, Experimental Thermal and Fluid Science, Vol. 3, p 440-409, 1990.

2.Bilitsky, A., “The effect of geometry on heat transfer by free onvecton from a fin array, MS Thesis, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel, 1986.

3.Bar-Cohen, A., and Rohsenow, W. M., “Thermally optimum spacing of vertical, natural convection cooled, parallel plates, ASME Journal of Heat Transfer, Vol. 106, p 116-123, 1984.

4.Schnipke, R.J., Hayward, J.D., and Rice, J.R., “A fluid flow and heat transfer analysis for evaluating the effectiveness of an IC package heat sink, Proceeding of the Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, p 81-87, 1989.

5.Linton, R.L., and Agonafer, D., “Coarse and detailed CFD modeling of a finned heat sink,, IEEE Transactions On Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, no. 3, 1995.

6.Barrett, A. V., and Obinelo, I. F., “Characterization of longitudinal fin heat sink thermal performance and flow bypass effects through CFD methods, Proceedings of the 13th IEEE Annual Semiconductor Thermal Measurement and Management Symposium, p. 158-164, 1997.

7.Behnia, M., Copeland, D., and Soodphakdee, D., “A comparison of heat sink geometries for laminar forced convection : Numerical simulation of periodically developed flow, Int. Society Conference on Thermal Phenomena, IEEE, p. 310-315, 1998.

8.Iyengar, M., and Bar-Cohen, A., “Least-Material optimization of vertical Pin-Fin, Plate-Fin and Triangular-Fin heat sinks in natural convective heat transfer, IEEE International Society Conference on Thermal Phenomena, p. 295-302, 1998.

9.Yu, E., and Joshi, Y., “Heat transfer enhancement from enclosed discrete components using Pin-Fin heat sinks, International Journal of Heat and Mass Transfer, Vol. 45, No. 25, p 4957-4966, 2002.

10.Bessaih, R., and Kadja, M., “Turbulent natural convection cooling of electronic components mounted on a vertical channel, Applied Thermal Engineering 20, p 141-154, 2000.

11.Naidu, S.V., Rao, V.D., Rao, B.G., Sombabu, A., and Sreenivasulu, B., “Natural convection heat transfer from fin arrays-experimental and theoreticalal study on effect of inclination of base on heat transfer, ARPN Journal of Engineering and Applied Sciences, Vol. 5, No. 9, 2010.

12.Ledezma, G., and Bejan, A., “Heat sinks with sloped plate fins in natural and forced convection, Int. J. Heat Mass Transfer, Vol. 39, No. 9, p 1773-1783, 1996.

13.Goshayeshi, H.R., Fahiminia, M., and Naserian, M.M., “Numerical modeling of natural convection on various configuration of rectangular fin arrays on vertical base plates, World Academy of Science, Engineering and Technology, 73, 2011.
14.El-Sayed, S. A., Mohamed, S. M., Abdel-latif, A. M., and Abouda, A.E., “Investigation of turbulent heat transfer and fluid flow in longitudinal Rectangular-Fin arrays of different geometries and shrouded fin array, Experimental Thermal and Fluid Science, Vol. 26, no. 8, p 879-900, 2002.

15.Wirtz, R. A., Chen, W., snd Zhou, R., “Effect of flow bypass on the performance of longitudinal fin heat sinks, Transactions of the ASME, Vol. 116, p 206-211, 1994.

16.Jonsson, H., and Palm, B., “Thermal and hydraulic behavior of plate fin and strip fin heat sinks under varying bypass conditions, IEEE Transactions on Components and Packaging Technologies, Vol. 23, no. 1, 2000.

17.王文耕, “電腦CPU散熱片造型對其熱傳效果之影響 ,國立成功大學機械工程學系碩士論文,2003。

18.劉永智, “利用逆算法和實驗溫度值估算CPU上之散熱鰭片的熱傳係數 ,國立成功大學機械工程學系碩士論文,2006。

19.彭相武, “二維通道混合對流下電子元件之熱傳增益效應分析 ,國立成功大學造船及船舶機械工程學系碩士論文,1997。

20.古慧雯, “通道內散熱片之大渦紊流模式及熱傳研究 ,國立成功大學系統及船舶機電工程學系碩士論文,2005。

21.盧明新, “45度肋、V形雙流、鱗狀熱傳粗化面與管內設單、雙、參扭旋片熱傳研究 ,國立高雄海洋科技大學輪機工程研究所碩士論文,2005。

22.張建文、楊振亞、張政 編著, “流體流動與傳熱過程得數值模擬基礎與應用 , 化學工業出版社,2010。

23.Incropera, F.P., Dewitt, D.P., “Fundamentals of heat and mass transfer 4/e, John Wiley & Sons, Inc., 1997.

24.Subramanian, S.G., and Selvam, V., “ Natural convection in cavities with internal fins, LAPLAMBERT Academic Publishing, 2010.

25.Bejan, A., “Convection heat transfer, John Wiley and Sons Inc., New York, NY, 1985.

26.Anderson, W., and Bonhus, D.L., “An implicit upwind algorithm for computing turbulent flows on unstructured grids, Computers Fluids, 23(1):1–21, 1994.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊