跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林芮菁
研究生(外文):Ruei-JingLin
論文名稱:利用GPS浮標監測海洋訊號:氣象海嘯與有效波高
論文名稱(外文):Monitoring Oceanic Signals using GPS Buoys: Meteotsunami and Significant Wave Height
指導教授:郭重言郭重言引用關係曾宏正曾宏正引用關係
指導教授(外文):Chung-Yen KuoChung-Yen Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:112
中文關鍵詞:氣象海嘯GPS浮標有效波高
外文關鍵詞:meteotsunamiGPS buoysignificant wave height
相關次數:
  • 被引用被引用:5
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
Global Positioning System (GPS)浮標已被證實可用來觀測海水面變化。與傳統六分鐘一筆潮位平均值之潮位站資料相比,GPS浮標可用來觀測高頻的海洋訊號,其週期由數秒到數分鐘不等。本研究利用GPS浮標收集台南安平商港附近海域兩處之海水面資料,並分析求得特定海洋訊號資料:氣象海嘯(meteotsunami)與有效波高(significant wave height)。由於氣象海嘯振幅會受到港灣共振效應而變大,故本研究藉由在台南安平商港內及港外各放置一個GPS浮標,同時分析港內與港外GPS浮標紀錄,進一步探討港灣共振頻率與氣象海嘯頻率之相關性。實驗時於岸上設置一固定站進行相對差分定位,做為GPS浮標定位結果之參考解,利用四種不同GPS解算軟體,分別為GrafNav軟體、RTKLIB軟體、P3軟體以及GAMIT TRACK軟體,搭配International GNSS Service (IGS)所提供之精密星曆進行精密單點定位解算或動態定位解算,之後計算GPS浮標高程變化量與潮位站間差值之標準偏差值(Root Mean Square, RMS)來比較不同GPS解算軟體在不同解算方式下之品質優劣。為了利用GPS浮標觀測之海水面資料進行氣象海嘯與波浪訊號研究,我們利用37個常見的分潮週期與潮位站資料計算出GPS浮標觀測時的潮位高度,將GPS浮標解算之原始資料與擬合後的潮位高度利用移動平均法(Moving average)擷取出氣象海嘯與波浪訊號加以分析。之後,利用零上切法(zero-up crossing)與零下切法(zero-down crossing)定義出波高值,計算前三分之一的波高平均值為有效波高,而前三分之一波高的週期平均值為有效波高之週期,此計算結果可應用於海岸工程或近岸工程建設。最後將港內與港外浮標之差分定位解的海水面時間序列利用Hilbert Huang Transform (HHT)分解成數個Intrinsic Mode Functions (IMFs)分量,大致上分為高頻、中頻以及潮汐分量,藉由HHT分解後的頻譜強度圖判定是否偵測到氣象海嘯的存在。
Global Positioning System (GPS) buoys have been demonstrated to collect sea level data effectively and economically. By comparing to tide gauge records, GPS buoys provide high-frequency oceanic signals with periods of a few seconds to a few minutes that cannot be detected from 6-minute tide gauge records. In the study, GPS buoys were used to measure sea level variations in Aping harbor, Tainan and to study meteotsunami and significant wave height (SWH). Since meteotsunami may be amplified by harbor resonance, two GPS buoys were deployed inside and outside the Aping harbor, respectively to investigate the relationship between the harbor resonance and the frequencies of meteotsunamis. Different softwares including GravNav, RTKLIB, P3 and GAMIT/GLOBK are used to process GPS buoy measurements using Differential GPS (DGPS) with an additional GPS receiver as a reference station on shore and Precise Point Positioning (PPP) technique with the precise ephemerides of the final product provided by International GNSS Service (IGS). In order to verify the processed results, we compare the processed results derived from different softwares with Aping tide gage records. Using 37 tidal periods to fit tide gauge records to obtain the ocean tide, the processed GPS buoy results after removing fitting ocean tide are used to study meteotsunami and SWH by the moving average. Wave heights are defined by the zero-up crossing and zero-down crossing methods and the mean wave height of the highest one-third of wave heights, called SWH, is calculated. The estimated SWH can be provided for guiding the coastal construction. Finally, oceanic signals of different frequencies including high frequency, middle frequency, and tidal components are acquired using GPS buoy derived sea level variations by Hilbert-Huang Transformation (HHT) and then are used to detect the phenomenon of meteotsunami.
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
§1-1 研究背景 1
§1-2 研究動機與目的 5
§1-3 文獻回顧 6
§1-4 論文架構 8
第二章 GPS衛星定位 10
§2-1 GPS衛星定位原理 10
§2-2 定位誤差來源 11
§2-3 定位誤差來源 13
§2-3-1 衛星軌道誤差 13
§2-3-2 時錶誤差 13
§2-3-3 大氣層延遲誤差 13
§2-3-4 接收儀天線相位中心偏差 15
§2-3-5 多路徑效應 16
§2-4 一次、二次、三次差分相對定位 16
§2-4-1 地面一次差分 17
§2-4-2 空中一次差分 18
§2-4-3 二次差分 19
§2-4-4 三次差分 20
§2-5 精密單點定位原理 21
§2-5-1 精密單點誤差來源與改正 25
§2-5-2 與衛星有關之誤差與改正 25
§2-5-3 與訊號傳播有關之誤差 26
§2-5-4 與接收儀有關的誤差與改正 27
第三章 GPS浮標及解算軟體 29
§3-1 GPS浮標架構 29
§3-2 潮位站 32
§3-3 GRAFNAV 34
§3-4 P3 35
§3-5 RTKLIB 37
§3-6 GAMIT/GLOBK 38
§3-7 擬合海潮及改正 39
§3-8 有效波高計算 42
§3-9 希爾伯特黃轉換法(HILBERT HUANG TRANSFORM) 43
§3-9-1 經驗模式分解(EMD) 43
§3-9-2 希爾伯特轉換(Hilbert Transform) 45
第四章 實驗結果與分析 46
§4-1 外業實驗及資料處理流程 46
§4-2 不同GPS軟體解算之比較 48
§4-3 港內與港外浮標解算結果比較 69
§4-4 有效波高計算 76
第五章 結論與建議 83
§5-1 結論 83
§5-2 未來建議 84
參考文獻 86
附錄 GPS浮標HHT分析解算成果 93
[1]王錫祺,台灣海域JASON-1 測高衛星的絕對率定與成果,國立中正大學地震研究所碩士論文,嘉義,2008。
[2]邱冠維,利用精密單點定位進行GPS浮標近即時精密單點定位。國立成功大學測量及空間資訊學系碩士論文,台南,2009。
[3]林演斌、楊益昇、王仲豪、林清睿、高家俊,資料觀測頻率對潮位分析的影響。第30屆海洋工程研討會論文集,國立交通大學,2008。
[4]姜介中,利用驗潮記錄估計臺灣沿岸地表垂直運動。國立臺灣大學理學院海洋研究所碩士論文,台北,2009。
[5]孫翊騰,適用於電離層高活動期間之現代化GPS長基線計算方法。國立成功大學測量及空間資訊學系碩士論文,台南,2010。
[6]郭力豪,台灣沿岸氣象海嘯特性之初步研究。國立交通大學土木工程研究所碩士論文,新竹,2009。
[7]張育瑋,GPS量測波浪之研究。國立成功大學水利及海洋工程研究所碩士論文,台南,2007。
[8]曾清涼、儲慶美,GPS衛星測量原理與應用。第二版,國立成功大學衛星資訊研究中心,台南,1999。
[9]楊名,公分級GPS衛星即時動態定位系統,測量工程,第39卷,第四期,pp.1-18,1997。
[10]楊謹誌,台灣東北海域波浪特性與波能分析。國立台灣海洋大學河海工程學系碩士論文,基隆,2010。

[11] Abdel-Salam, M., Gao, Y. and Shen, X., Analyzing the Performance Characteristics of a Precise Point Positioning System. Proceedings of the ION GPS-2002, Oregon Convention Centre, Portland, Oregon, USA, September 24-27, 2002.
[12] Born, G.H, Parke, M.E., Axelrad, P., Gold, K.L., Johnson, J., Key, K.W. and Kubitschek, D.G., Calibration of TOPEX Altimeter using GPS Buoy. Journal of Geophysical Research, Vol.99: 24517-24526, 1994.
[13] Bryant, E. Tsunami: The Underrated Hazard. Cambridge University Press, Cambridge, pp.350, 2001.
[14] Cheng, K., GPS Buoy Campaigns for Vertical Datum Improvement and Radar Altimeter Calibration. OSU Report No.470, Geodetic Science and Surveying in the Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA, 2004.
[15] Cheng, K., Analysis of Water Level Measurements Using GPS. Ph.D. dissertation, The Ohio State University, Columbus, Ohio, USA, 2005.
[16] Colucci, P. and Michelato, A., An Approach to Study of the ‘Marubbio’ Phenomenon. Bollettino di Geofisica Theorica ed Applicata, Vol.13, pp.3–10, 1976.
[17] Defant, A., Physical Oceanography, Vol.2, Pergamon Press, Oxford, UK, 1961.
[18] Drago, A.F., A Study on the Sea Level Variations and the ‘Milghuba’ Phenomenon in the Coastal Waters of the Maltese Islands. Ph.D. dissertation, University of Southampton, 1999.
[19] El-Rabbany, A., Precise GPS Point Positioning:the Future Alternative to Differential GPS Surveying. Proceedings of the ION GPS-2002, Oregon Convention Centre, Portland, Oregon, USA, September 24-27, 2002.
[20] Gao, Y. and Shen, X., Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning. Proceedings of ION GPS-2001, Salt Lake City, 2001.
[21] Gao, Y., Abdel-Salam, M., Chen, K. and Wojciechowski, A., Point Real-Time Kinematic Positioning. Proceedings of the International Association of Geodesy IAG General Assembly Sapporo, Japan, June 30-July 11, 1003.
[22] Gonz´alez, J.I., Fareras, S.F., and Ochoa, J., Seismic and Meteorological Tsunami Contributions in the Manzanillo and Cabo San Lukas Seiches. Marine Geodesy, Vol. 24, pp.219–227, 2001.
[23] Hamlington, B.D., Leben, R.R., Godin, O.A., Legeais, J.F., Gica, E., and Titov, V.V., Detection of the 2010 Chilean Tsunami using Satellite Altimetry. Natural Hazards Earth System Sciences, Vol.11, pp.2391–2406, 2011.
[24] He ́roux, P., Kouba, J., Collins, P. and Lahaye, F., GPS Carrier-Phase Point Positioning with Precise Orbit Products. Proceedings of the KIS 2001, Banff, Alberta, Canada, June 5-8, 2001.
[25] Herring, T.A., King, R.W. and McClusky, S.C., Introduction to GAMIT/GLOBK. October 26, 2010.
[26] Hibiya, T. and Kajiura, K., Origin of ‘Abiki’ Phenomenon (Kind of Seiches) in Nagasaki Bay. Journal of the Oceanographical Society of Japan, Vol.38, pp.172-182, 1982.
[27] Hirata, K., Satake, K., Tanioka, Y., Kuragano, T., Hasegawa, Y., Hayashi, Y., and Hamada, N., The 2004 Indian Ocean tsunami: Tsunami Source Model from Satellite Altimetry. Earth Planets Space, Vol.58, pp.195–201, 2006.
[28] Hofmann-Wellenholf, B., Lichtemegger, H. and Collins, J., GPS Theory and Practice. Second Edition, Springer-Verlag, New York, 1992.
[29] Honda, K., Terada, T., Yoshida, Y., and Isitani, D., An Investigation on the Secondary Undulations of Oceanic Tides. Journal of the College of Science, Imperial University of Tokyo, pp.108, 1908.
[30] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H., The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Physical and Engineering Sciences London, A, No.454, pp.903-995, 1998.
[31] Janes, H., Langley, R. and Newby, S., Analysis of tropospheric delay prediction models:Comparisons with Ray Tracing and Implications for GPS Relative Positioning. Bulletin Ge ́ode ́sique, Vol.65, No.3, pp.151-161, 1991.
[32] Kato, T., Terada, Y., Kinoshita, M., Kakimoto, H., Isshiki, H., Moriguchi, T., Takada, M., Tanno, T., Kanzaki, M. and Johnson, J., A New Tsunami Monitoring System using RTK-GPS. ITS 2001 Proceesings, Session5, Number 5-12, 2001.
[33] Kato, T., Terada, Y., Ito, K., Hattori, R., Abe, Takenori., Miyake, T., Koshimura, S. and Nagai, T., Tsunami Due to the 2004 September 5th off the Kii Peninsula Earthquake, Japan, recorded by a new GPS buoy. Earth Planets Space, Vol.57, pp.297–301, 2005.
[34] Kelecy, T.M., Born, G.H., Parke, M.E. and Rocken, C., Precise Mean Sea Level Measurements using the Global Positioning System. Journal of Geophysical Research, Vol.99, pp.7951-7959, 1994.
[35] Lin, L.C., Liang, M.C. and Chang, H.K., Periods of 10-30 Minutes of Sea Level Variation Observed in the Coastal Regions of Taiwan. Geophysical Research Abstracts Vol. 12, EGU2010-3138-1, EGU General Assembly 2010, 2010.
[36] Monserrat, S., Ibberson, A., and Thorpe, A.J., Atmospheric Gravity Waves and the “Rissaga Phenomenon. Quarterly Journal of the Royal Meteorological Society of Japan,Vol.117, pp.553–570, 1991.
[37] Monserrat, S., Vilibić, I. and Rabinovich, A.B., Meteotsunamis: Atmospherically Induced Destructive Ocean Waves in the Tsunami Frequency Band. Natural Hazards Earth System Sciences, Vol.6, pp.1035–1051, 2006.
[38] Nakano, M. and Unoki, S., On the Seiches (Secondary Undulations of Tides) Along the Coast of Japan. Records of Oceanographic Works in Japan, Spec. no. 6, pp.69–214, 1962.
[39] Nomitsu, T., A Theory of Tsunamis and Seiches Produced by Wind and Barometric Gradient. Memoirs of the College of Science, Kyoto Imperial University A 18(4), pp.201–214, 1935.
[40] Parkinson, B.W. and Spilker, Jr.J., Global Positioning System:Theory and Applications, Vol.1, American Institute of Aeronautics and Astronautics, Washington DC, 1996.
[41] Positioning and Mobile Information Systems Group Department of Geomatics Engineering, The University of Calgary. P3 User Manual. Canada, 2005.
[42] Rabinovich, A.B. and Monserrat, S., Meteorological Tsunamis Near the Balearic and Kuril Islands: Descriptive and statistical analysis. Natural Hazards Earth System Sciences, Vol.13, no.1, pp.55–90, 1996.
[43] Rabinovich, A.B. and Monserrat, S., Generation of Meteorological Tsunamis (Large Amplitude Seiches) Near the Balearic and Kuril Islands. Natural Hazards Earth System Sciences, Vol.18, no.1, pp.27–55, 1998.
[44] Rocken, C., Kelecy, T.M., Born, G.H., Young, L.E., Purcell, G.H., Wolf, S.K., Measuring Precise Sea Level From a Buoy Using the Global Positioning System. Geophysical Research Letters, Vol.17, pp.2145 – 2148, 1990.
[45] Saastamoinen, J., Contributions to the Theory of Atmospheric Refraction. Part II, Refraction corrections in satellite geodesy, Bulletin Geodesque, Vol. 107, pp.13-34, 1973.
[46] Seeber, G., Satellite Geodesy:Foundations, Methods and Applications. Walter de Gruyter, Berlin, 1993.
[47] Shum, C. and Parke, M.E., Current GPS-Buoy Sea Level Research. Draft, The Ohio State University, Columbus, Ohio, USA, 1999.
[48] Shum, C., Yi, Y., Cheng, K., Kuo, C., Braun, A., Calmant, S. and Chambers, D., Calibration of Jason-1 Altimeter over Lake Erie. Marine Geodesy, Vol.26, pp.335-354, 2003.
[49] Song, T.Y., Chen, J., Fu, L.L., Victor, Zlotnicki., Shum, C. K., Yi, Y. and Hjorleifsdottir, V., The 26 December 2004 Tsunami Source Estimated from Satellite Radar Altimetry and Seismic Waves. Geophysical Research Letters, Vol.32, L20601, doi:10.1029/2005GL023683, 2005.
[50] Sverdrup, H.U. and Munk, W.H., Wind Waves and Swell; Principles in Forecasting:U.S. Navy Hydrographic Office Miscellaneous, no.11275,1944.
[51] Takasu, T. RTKLIB ver.2.4.1 Manual. June 10, Tokyo, 2011.
[52] Vilibi´c, I., Numerical Study of the Middle Adriatic Coastal Waters Sensitivity to the Various Air Pressure Travelling Disturbances. Annales Geophysicae, Vol.23, pp.3569–3578, 2005.
[53] Watson, C., Coleman, R., White, N., Church, J. and Govind, R., Absolute Calibration of TOPEX/Poseidon and Jason-1 using GPS Buoys in Bass Strait, Australia. Marine Geodesy, Vol.26, no.3–4, pp.285–384, 2003.
[54] Way Point Product Group. GrafNav/GrafNet User Guide. April 7, Canada, 2010.
[55] Wu, Z. and Huang, N.E., A Study of the Characteristics of White Noise using the Empirical Mode Decomposition Method. Proceedings of Royal Society London. A, no.460, pp.1597-1611, 2004.
[56] Wu, Z. and Huang, N.E., Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, Vol.1, no.1, pp.1-41, 2009.
[57] Young, L.E., Wu, S.C. and Dixon, T.H., Decimeter GPS Positioning for Surface Element of Sea Floor Geodesy System. Proceedings of International Symposium on Marine Positioning, October 14-17, Reston, Virginia, USA, 1986.
[58] Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H., Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophysical Research, Vol.102, no.B3, pp.5005-5017, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top