跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉人瑜
研究生(外文):Jeu-YuLiu
論文名稱:音樂家與非音樂家對於和諧音程誘發的事件相關腦電位
論文名稱(外文):Event-Related Potentials during Consonance Interval Perception from Musicians and Non-musicians
指導教授:梁勝富梁勝富引用關係
指導教授(外文):Sheng-Fu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:53
中文關鍵詞:大腦可塑性和諧音程事件相關電位聽覺皮質
外文關鍵詞:brain plasticityconsonance intervalevent-related potentialsauditory cortex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
大腦可塑性為大腦改變其結構與功能的能力,經驗與訓練則為其改變的一個主要因素。長期接受專業音樂訓練的音樂家則提供了一個良好的大腦可塑性研究素材。諧和音程是西方音樂調性理論普遍且重要的概念。過去研究發現音樂家對於和諧音程的處理是符合音程和諧度,然而另一方面針對心理聲學的研究卻認為和諧和不和諧是受到臨界的頻寬(roughness)的影響。和諧音程或不和諧音程聲音刺激包含會產生roughness的頻率範圍及不會產生roughness的頻率範圍,藉此來研究音樂家與非音樂家腦皮質在處理音程和諧度及roughness有何差異。本研究利用行為實驗和事件相關電位實驗來比較音樂家與非音樂家的不同。從行為實驗結果發現,業餘音樂家可明確分辨和諧與不和諧音程(正確率約95%),但非音樂家卻無法明確分辨(正確率約50%),且其認為沒有roughness的刺激為和諧音程 (機率約83%),有roughness的刺激為不和諧音程 (機率約79%)。
在ERPs分析中出現N1、P2的腦電位反應,N1由初級聽覺皮質區產生,結果顯示業餘音樂家或非音樂家在N1沒有明顯差異。P2是由次級聽覺皮質區產生,針對和諧音程而言,業餘音樂家聽到和諧音程比不和諧音程能夠產生較強的P2振福,非音樂家則沒有。另一方面,沒有roughness的刺激比有roughness的刺激讓非音樂家引起較強的P2振福。根據行為與ERPs結果,行為統計受測者在聽到聲音刺激後給與決策時間需時650 ms,但在ERPs分析上發現對和諧音程兩群各在P2振幅 (潛時約250 ms)上有顯著的差異,且音樂家與非音樂家的P2的振幅現象與行為正確率結果呈現一致性,因此從P2的結果得知音樂家與非音樂家在和諧音程感知上的明顯差異性。實驗結果指出大腦對於和諧音程的反應會受到專業訓練的影響,業餘音樂家的次級聽覺皮質區因受到長期音樂訓練而強化,可明確分辨和諧音程與不和諧音程,非音樂家未受過任何音樂訓練,導致其分辨和諧音程時受到roughness的影響。總結來說,音樂家與非音樂家對於和諧音程的感知差異即其在腦皮質上的變化,來自於是否受過音樂訓練。

Brain plasticity is the ability in brain to change its structure and function, and the major factor including experience and training. Musician’s brain received long-term musical training is also regarded as an ideal model to investigate plasticity of the human brain. Consonance of interval is a most significant general idea of western tonal music. Some studies indicated that cortical processing of musical consonance conforms to consonance of interval for amateur musicians. However, according to the psychoacoustic theory, consonance intervals are related to critical bandwidth (roughness). The consonant (perfect fifth) and dissonant (tritone) intervals include the existence of roughness (with and without roughness). Therefore, the research wants to find out the cortical processing of musical consonance and what are the differences with consonance of interval and roughness for musicians and non-musicians. The aim of the experiment is obtaining comparison of musicians and non-musicians by behavior and ERPs experiments. In the behavior experiment, amateur musicians accurately categorized the consonant and dissonant intervals (hit rate was 90%), but not for non-musicians (hit rate was 50%). Non-musicians considered that stimuli without roughness were consonant interval (percentage achieved 83%) and stimuli with roughness were dissonant interval (percentage achieved 79%).

In the ERPs analysis, N1 and P2 had significant response. N1 sources were in localized in the region of the primary auditory cortex. The amplitude of the N1 evoked by consonant or dissonant intervals had no significant difference from musicians or non-musicians. P2 sources were localized in the region of the secondary auditory cortex. Considering the consonance type, the P2 amplitude evoked by consonant intervals was stronger than by dissonant intervals from musicians. On the other hand, the P2 amplitude evoked by stimuli without roughness was stronger than by stimuli with roughness from non-musicians. According to the behavior and ERPs experiment, it took about 650 ms from receiving the stimuli to make the judgment for subjects, and musicians and non-musicians all had significant difference in P2 components (latency was 250 ms). Furthermore, ERPs results in P2 components were in agreement with the hit rate in behavior result for musicians and non-musicians, indicating the difference of consonance perception from musicians and non-musicians. The results point to the influence of expertise, since different ERPs were obtained cortical processing of listening to consonant and dissonant intervals. Musicians had enhanced in secondary auditory cortex compared with non-musicians and could accurately categorized the consonant and dissonant intervals, and non-musicians influenced by the existence of roughness while they categorized the stimulus. In conclusion, the perception of musical consonance in musicians and non-musicians reflects differently in cortical processing, resulting from whether received the musical training or not.

摘要 iv
Abstract vi
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Research background 1
1.1.1 Pitch 1
1.1.2 Musical consonance 2
1.1.3 Current research of musical consonance 5
1.1.4 Current researches of musical training 6
1.1.5 The auditory event-related potential(AEP) 7
1.1.6 Current research of musicians and non-musicians 8
1.2 Research motivation 9
Chapter 2 Materials and methods 10
2.1 Environment of Human Music-Perception Experiment 10
2.2 Subjects 12
2.3 Stimuli 15
2.4 Experiment Design 18
2.4.1 Behavior Experiment 19
2.4.2 ERPs Experiment 20
2.5 EEG recordings and data analysis 21
2.6 Statistical analysis 23
Chapter 3 Experiment Results 24
3.1 Behavior experiment: percentages of hit rate and response time 24
3.1.1 Consonance (tritone) and dissonance (perfect fifth) 26
3.1.2 With roughness and without roughness 26
3.1.3 Response time 28
3.2 ERPs experiment: the amplitude and latency of N1 and P2 29
3.2.1 Amateur musicians 29
3.2.2 Non-musicians 34
3.2.3 Comparison 38
Chapter 4 Discussions 42
4.1 Behavior data 42
4.2 Auditory event-related potential 44
4.2.1 Amateur Musicians 44
4.2.2 Non-musicians 46
4.2.3 Comparison 47
Chapter 5 Conclusions 49
References 50

Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human brain mapping, 5(3), 206-215.
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9(3), 138-150.
Ballantyne, J. (1977). Music and the Brain: Studies in the Neurology of Music. Proceedings of the Royal Society of Medicine, 70(6), 445.
Bosnyak, D., Eaton, R., & Roberts, L. (2002). Enhancement of multiple components of the auditory evoked potential in nonmusicians by training for pitch discrimination with 40-Hz amplitude modulated tones.
García-Larrea, L., Lukaszewicz, A. C., & Mauguiére, F. (1992). Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 30(8), 723-741.
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245.
George, E. M., & Coch, D. (2011). Music training and working memory: an ERP study. Neuropsychologia.
Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage, 15(1), 207-216.
Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(4108), 177-180.
Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949.
Itoh, K., Suwazono, S., & Nakada, T. (2003). Cortical processing of musical consonance: an evoked potential study. Neuroreport, 14(18), 2303.
Knief, A., Schulte, M., Bertrand, O., & Pantev, C. (2000). The perception of coherent and non-coherent auditory objects: a signature in gamma frequency band. Hearing research, 145(1-2), 161-168.
Koelsch, S. (2011). Toward a neural basis of music perception–a review and updated model. Frontiers in Psychology, 2.
Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10(6), 1309.
Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in cognitive sciences, 9(12), 578-584.
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599-605.
Lee, S. Y. (2012). Perceptual and neural processing of consonance and dissonance in musicians and non-musicians: an ERP study. University of Otago.
Liu, C. (2009). Learning-induced Plasticity in Musical Intervals Discrimination and Perception.
Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician's brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473-477.
Neukirch, M., Hegerl, U., Kötitz, R., Dorn, H., Gallinat, U., & Herrmann, W. (2002). Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components. Neuropsychobiology, 45(1), 41-48.
Pantev, C., & Herholz, S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neuroscience & Biobehavioral Reviews.
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811-814.
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12(1), 169.
Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lütkenhöner, B. (1999). Short-term plasticity of the human auditory cortex. Brain research, 842(1), 192-199.
Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. The Journal of Neuroscience, 24(30), 6810-6815.

Peretz, I., Blood, A. J., Penhune, V., & Zatorre, R. (2001). Cortical deafness to dissonance. Brain, 124(5), 928-940.
Pritchard, W. S., Shappell, S. A., & Brandt, M. E. (1991). Psychophysiology of N200/N400: A review and classification scheme. Advances in psychophysiology, 4, 43-106.
Regnault, P., Bigand, E., & Besson, M. (2001). Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory event-related brain potentials. Journal of Cognitive Neuroscience, 13(2), 241-255.
Ritter, W., Simson, R., Vaughan, H. G., & Friedman, D. (1979). A brain event related to the making of a sensory discrimination. Science, 203(4387), 1358.
Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1(2), 191-201.
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature neuroscience, 5(7), 688-694.
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. The Journal of Neuroscience, 23(13), 5545-5552.
Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. (2005). Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. Neuroreport, 16(16), 1781.
Shahin, A. J., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. Neuroimage, 41(1), 113-122.
Shahin, A. J., Trainor, L. J., Roberts, L. E., Backer, K. C., & Miller, L. M. (2010). Development of auditory phase-locked activity for music sounds. Journal of neurophysiology, 103(1), 218-229.
Terhardt, E. (1984). The concept of musical consonance: A link between music and psychoacoustics. Music Perception, 276-295.
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Experimental Brain Research, 161(1), 1-10.
Tramo, M. J., Shah, G. D., & Braida, L. D. (2002). Functional role of auditory cortex in frequency processing and pitch perception. Journal of neurophysiology, 87(1), 122-139.
Tremblay, K., Kraus, N., McGee, T., & Ponton, C. (2001). Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear and hearing, 22(2), 79.
Tsao, Y. H. (2008). Musical consonance perception in musicians vs nonmusicians: an event-related potential and behavioral study.
Zatorre, R. (2005). Music, the food of neuroscience? Nature, 434(7031), 312-315.
Zwicker, E., Flottorp, G., & Stevens, S. S. (1957). Critical band width in loudness summation. The journal of the Acoustical Society of America, 29, 548.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top