跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝佳頴
研究生(外文):Jia-YingSie
論文名稱:以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究
論文名稱(外文):Separation of Cobalt, Nickel and, Aluminum ions in Blue Sludge leachate by Ion Exchange Resin
指導教授:申永輝申永輝引用關係
指導教授(外文):Yun-Hwei Shen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:吸附離子交換樹脂等溫線動力學熱力學
外文關鍵詞:AdsorptionIon-exchange resinIsothermsKineticsThermodynamics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:543
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
重金屬汙染的廢棄物種類眾多,本論文針對以石油工業上加氫脫硫(hydrodesulfurization,HDS)所用之主要觸媒(catalyst)廢棄後經進行有價金屬(釩、鉬)回收處理後之殘渣,即為含鎳、鈷廢觸媒渣(俗稱藍泥)為研究對象。國內目前藍泥產量每年約7000噸,因相關業者現行技術及設備尚無法處理,目前均採掩埋方式處理或運至中國大陸作為提煉鎳之原料,若這些含鎳、鈷廢觸媒能加以資源化利用,不僅可以解決棘手之有害廢棄物問題,同時還能達到鎳、鈷回收再利用之目的舒緩原料供給壓力與成本。本研究使用離子交換樹脂法處理含鈷、鎳、鋁等金屬離子之藍泥浸漬液,期能達到浸漬液中鈷、鎳之分離與純化的目的。主要研究內容為利用批次試驗進行吸附動力學探討進而獲得樹脂對鈷、鎳離子之最佳吸附條件及參數,再藉由離子交換管柱試驗利用樹脂對鈷、鎳吸附差異性進行層析吸附以達鈷、鎳金屬離子分離及純化之目的。
批次吸附試驗結果得知IRC748、M4195兩種螯合型離子交換樹脂在pH=3~4時對於吸附Ni、Co有最大吸附量,而M4195在酸性環境下對鈷、鎳仍具吸附效果。由樹脂吸附動力試驗結果得知,樹脂在400分內即可達到鈷、鎳吸附平衡,吸附數據經由Langmuir 等溫吸附模式分析後所得之參數可判斷IRC748與M4195對吸附Co、Ni有選擇性,吸附效果依序為IRC748-Ni 〉 IRC748-Co 〉 M4195-Ni 〉 M4195-Co; 而吸附數據經Freundlich等溫模式分析後所得參數可得知IRC748對Ni之吸附效果佳但吸附容量受溶質平衡濃度影響,於低平衡濃度時吸附最為不利,M4195對Ni吸附效果較佳,而其吸附容量不受溶質平衡濃度影響。經由Arrhenius equation求得IRC748吸附Ni、 Co離子與M4195吸附Ni、Co離子之活化能分別為17.8 kJ mol-1、34.24 kJ mol-1、11.02 kJ mol-1,另外由不同濃度下之吸附數據求得IRC748與M4195樹脂吸附鈷、鎳之相關熱力學參數Gibbs自由能變化(ΔG°)、焓變(ΔH°)及熵變(ΔS°)。
最後,藉由批次試驗所得最佳吸附條件進行離子交換管柱分離及純化Ni、Co及Al離子之實驗,以IRC748樹脂填充管柱在進流流速1 B.V./hr下進行吸附,再以流速1 B.V./hr之0.025 N硫酸洗脫劑進行洗脫可達Co、Ni 95%以上之分離效果。M4195樹脂則利用吸附強度之差異於洗脫時利用不同濃度(0.1 N、0.175 N、5 N)之洗脫劑進行分階段洗脫以達分離效果。

The current technology of the domestic recycle industry is unable to process the residue (blue sludge) which containing nickel and cobalt obtained from processing of wasted HDS catalyst. Currently the blue sludge was either disposed by land filling or transported to China as the raw materials for nickel refining. A technology of successfully recover nickel and cobalt in blue sludge is desperate.
The hot water leaching of acid-roasted blue sludge yields an solution rich in Co and Ni in addition to a large excess of Al. In this study we investigate the recovery of nickel and cobalt in blue sludge by ion exchange process.
Experimental measurements have been made on the batch ion exchange of Ni(II) and Co(II) from solution using cation exchanger of Amberlite IRC 748 and chelating resin of DOWEX M4195. The ion exchange behavior of two metals on the resin, depending on contact time, pH, temperature and resin dosage was studied. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. According to the Langmuir isotherm model, the ability for adsorption decreases in the order IRC748-Ni 〉 IRC748-Co 〉 M4195-Ni 〉 M4195-Co. The kinetic data were tested using Lagergren-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Various thermodynamic parameters of IRC748 and M4195 for Co and Ni such as Gibbs free energy ΔG°, enthalpy △H° and entropy △S° were also calculated. These parameters showed that the ion exchange of Ni(II) from solution was feasible, spontaneous and endothermic process in nature. The activation energy of ion-exchange (Ea) was determined as 17.8 kJ mol-1, 34.24 kJ mol-1 for Ni (II), Co (II) respectively using Amberlite IRC748 and was 11.02 kJ mol-1, for Ni (II) using DOWEX M4195 according to Arrhenius equation.
Finally, fixed-bed experiments were performed at inflow volumetric flow rate of 1-10 B.V./hr, and the elution volumetric flow rate was keep at 1 B.V./hr. The eluent H2SO4 concentrations were change from 0.025 N to 5 N. The results of fixed-bed experiments indicate a successful separation and purification of nickel and cobalt from a large excess of Al with DOWEX M4195 resin .
摘要 I
Abstract III
誌 謝 V
總目錄 VII
表目錄 IX
圖目錄 XII
第一章 緒論 1
1-1研究背景 1
1-2研究目的 5
第二章 理論基礎與前人研究 7
2-1離子交換樹脂之基礎理論(25)(26) 7
2-1-1 離子交換樹脂之分類及特性(27) 8
2-1-2 離子交換樹脂反應(28)(29)(30)(31)(32) 14
2-1-3吸附作用(33)(34) 17
2-1-4 等溫吸附方程式(26)(35) 18
2-2離子交換熱力學及動力學之研究 21
2-2-1反應過程熱力學之研究 21
2-2-2反應動力學之基礎理論(41)(42) 22
2-2-3 動力吸附模式 23
2-2-4反應速率常數 24
2-2-5 活化能與溫度關係 25
2-3 前人研究 27
2-3-1離子交換樹脂的選用、操作條件與流程 27
2-3-2 DOWEX4195螯合樹脂 29
2-3-3 Amberlite IRC748螯合樹脂 30
第三章 實驗方法與實驗步驟 32
3-1實驗流程 32
3-2 實驗材料與設備 35
3-2-1 實驗材料 35
3-2-2 實驗設備 38
3-3 實驗步驟 40
3-3-1 樹脂前處理 40
3-3-2 pH值影響樹脂吸附Co、Ni試驗 40
3-3-3樹脂使用量 41
3-3-4 樹脂反應動力學 41
3-3-4-1 反應平衡時間試驗 41
3-3-4-2 等溫吸附實驗 41
3-3-4-3離子交換熱力學及動力學之研究 42
3-3-5 離子交換管柱試驗 42
3-3-5-1 Strategy A使用IRC748樹脂進行離子交換管柱試驗 44
3-3-5-2 Strategy B使用M4195樹脂進行離子交換管柱試驗 45
3-4 性質分析 46
3-4-1藍泥特性分析 46
3-4-2 樹脂吸附及洗脫試驗 46
第四章 結果與討論 47
4-1藍泥特性分析 47
4-2 pH值影響樹脂吸附Co、Ni試驗 48
4-3樹脂使用量之吸附影響 50
4-4 樹脂吸附Co、Ni動力學試驗 52
4-4-1反應平衡時間 52
4-4-2等溫吸附曲線 53
4-4-3 離子交換熱力學 57
4-4-4離子交換動力學 58
4-5 Strategy A使用IRC748樹脂進行離子交換管柱試驗 67
4-5-1 Al(OH)3(S)沉澱試驗 67
4-5-2管柱吸附試驗 68
4-5-3不同流速之硫酸洗脫試驗 69
4-5-4洗脫劑之不同濃度試驗 70
4-5-5進液中Co、Ni不同含量比試驗 72
4-5-6管柱吸附不同B.V.數試驗 74
4-6 Strategy B離子交換管柱試驗 77
4-6-1 人工配製浸漬液離子交換管柱試驗 77
4-6-2藍泥浸漬液離子交換管柱試驗(藍泥浸漬液1) 82
4-6-2-1改變藍泥浸漬液吸附階段之進流速度(藍泥浸漬液-2) 84
4-6-2-2改變藍泥浸漬液吸附階段之濃度(藍泥浸漬液-3) 86
第五章 結論 89
參考文獻 92
1. 田福禎,王平,李曉麗等, 從鎳-鋁廢催化劑中回收鎳,化學世界,pp. 270-272,1996年。
2. Ahmad Baraka,P.J. Hall, “Melamine–formaldehyde–NTA chelating gel resin: Synthesis characterization and application for copper(II) ion removal from synthetic wastewater, Journal of Hazardous Materials 140, pp. 86-94, 2007.
3. 孫錦宜,廢催化劑回收利用,化學工業出版社,pp. 19-20,2001年。
4. 于秀蘭,楊家玲, 鎳鎘電池廢渣處理技術 ,化學工業與工程,pp. 32-38,1992年。
5. 史鳳梅,馬玉新,烏大年,廢舊鎳鎘電池的處理技術,青島大學學報,Vol. 18 No. 4,pp. 76-79,2003年。
6. 蘇英源,郭金國,冶金學,全華科技圖書股份有限公司,pp. 3-1-4-20,2000年。
7. 張國慶,廢觸媒資源化技術與福誼公司資源化成果,環境工程專欄,No. 31,2005年。
8. 宋明裕,電鍍製程重金屬廢水離子交換處理技術及案例介紹,經濟部工業局清潔生產與環保技術e報,No. 80,2010年。
9. Dr. Antonio N´unez Jim´enez, Moa, Cuba, “Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation, Journal of Hazardous Materials, B139, pp. 25-30, 2007.
10. Wensheng Zhang, Yoko Pranolo,Extraction and separation of nickel and cobalt with hydroxamic acids LIX®1104, LIX®1104SM and the mixture of LIX®1104 and Versatic 10, Hydrometallurgy 20, February 2012.
11. C.Y. Cheng, “Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1 — selection of a synergistic SX system, Hydrometallurgy 104, pp. 45-52, 2010.
12. C.Y. Cheng, “Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction Part 2: Semi- and fully-continuous tests, Hydrometallurgy 104, pp. 53-60, 2010.
13. N. Tzanetakis, W.M. Taama, K. Scott, R.J.J. Jachuck, “Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt, Separation and Purification Technology 30, pp. 113-127,2003.
14. A. Dabrowski, Z. Hubicki, P. Podkoscielny, “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere 56, pp. 91-106, 2004.
15. Yi-Chu Huang and S. Sefa Koseoglu, “Separation of heavy metals from industrial waste streams by membrane separation technology, Waste Mangement, Vol. 13, pp. 481-501, 1993.
16. Centro De Desenvolvimento Mineral, Companhia Vale do Rio Doce, “Selective sorption of nickel and cobalt from sulphate solutions using chelating resins, Int. J. Miner. Process 74, pp. 359-371, 2004.
17. Dow Chemical U.S.A., “Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195, Hydrometallurgy 12, pp. 387-400, 1984.
18. Zaimawati Zainol, “Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings, Hydrometallurgy 96, pp.283-287, 2009.
19. F.D. Mendes, “Selective sorption of nickel and cobalt from sulphate solutions using chelating resins, Int. J. Miner. Process 74, pp. 359-371, 2004.
20. 王紹文,姜鳳有,重金屬廢水治理技術,冶金工業出版社,p. 18,1993年11月。
21. Robert W. Peters, Thomas E. White, “Wastewater treatment: physical and chemical methods, Journal (Water Pollution Control Federation), Vol. 58, No. 6, pp. 481-487, 1986.
22. Heikki Leinonen , Jukka Lehto, “Purification of nickel and zinc from waste waters of metal-plating plants by ion exchange, Reactive Polymers 23, pp. 221-228, 1994.
23. O.N. Kononova, “Ion exchange recovery of nickel from manganese nitrate solutions, Hydrometallurgy 54, pp. 107-115, 2000.
24. A.G. Kholmogorov, “Ion exchange purification of manganese sulphate solutions from cobalt, Hydrometallurgy 45, pp. 261-269, 1997.
25. 張文青,分離分析化學,華東理工大學出版社,pp. 157-183,2007年。
26. Tom D. Reynolds, “Unti operations and processes in environmental engineering, International Thomson Publishing Asia, pp. 350-391, 1982.
27. G. Schmuckler, “Chelating resins-their anaanalytical properties and applications, Talanta Vol. 12, pp. 281-290 1965.
28. Ahmed M. Donia, Asem A. Atia, “Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles, Separation and Purification Technology 49, pp. 64-70, 2006.
29. Ronald R. Navarro, Kenji Tatsumi, “Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine, Wat. Res. Vol. 35, No. 11, pp. 2724–2730, 2001.
30. Asem A. Atia, Ahmed M. Donia, “Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups, Reactive & Functional Polymers 65, pp. 267-275, 2005.
31. A. Dabrowski, Z. Hubicki, P. Podkoscielny, “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere 56, pp. 91-106, 2004.
32. Panpan Ling, Fuqiang Liu,Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms, Talanta 81, pp. 424-432, 2010.
33. Sadhan Pramanik, Pulak K. Dhara, “A chelating resin containing bis(2-benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application, Talanta 63, pp. 485-490, 2004.
34. W. Li, H. Zhao , P.R. Teasdale, R. John, “ynthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd, Reactive & Functional Polymers 52, pp. 31-41, 2002.
35. Yu Liu, Ya-Juan Liu, “Review Biosorption isotherms, kinetics and thermodynamics, Separation and Purification Technology 61, pp. 229-242, 2008.
36. Ahmet Sari, Durali Mendil, Mustafa Tuzen, Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass : Equilibrium, kinetic and thermodynamic studies, Chemical Engineering Journal 144, pp. 1-9, 2008.
37. Ahmet Sarı, Mustafa Tuzen, Demirhan Cıtak, “Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution, Journal of Hazardous Materials 148, pp. 387–394, 2007.
38. R. Donat, “Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, Journal of Colloid and Interface Science 286, pp. 43–52, 2005.
39. Mohammad Ajmal, Rifaqat Ali Khan Rao, Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake), Journal of Hazardous Materials B122, pp. 177–183, 2005.
40. M.H. Khani, H. Pahlavanzadeh, “Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae, Journal of Hazardous Materials 150, pp. 612–618, 2008.
41. Nasr Z. Misak,Langmuir isotherm and its application in ion-exchange reactions, Reactive Polymers 21, pp. 53-64, 1993.
42. Octave Levenspiel, Chemical reaction engineering, John Wiley & Sons, 1999.
43. C. Kantipuly, Skatragadda, Chelating polymers and related supports for separation and preconcentration of trace metals, Talanra, Vol. 37, No. 5, pp. 491-517, 1990.
44. Zacaria Reddad, Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies, Environ. Sci. Technol 36. pp. 2067-2073, 2002.
45. Dorota KoøodynÂska, Application of a new-generation complexing agent in removal of heavy metal ions from aqueous solutions, Ind. Eng. Chem. Res. 47, pp. 3192-3199, 2008.
46. D. Feng, Treatment of acid mine water by use of heavy metal precipitation and ion exchange, Minerals Engineering, Vol. 13, No. 6, pp. 623-642, 2000.
47. L. Rosato, G.B. Harris and R.W. Stanley, “Separation of nickel from cobalt in sulphate medium by ion exchange, Hydrometallurgy 13, pp. 33-44, 1984.
48. Seham Nagib, “Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan, Hydrometallurgy 51, pp. 73-85, 1999.
49. Amélie Janin, Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins, Journal of Hazardous Materials 169, pp. 1099-1105, 2009.
50. Yuewei Zhu, “Toward separation of toxic metal (II) cations by chelating polymers: some noteworthy observations, Reactive Polymers 13, pp. 241-253, 1990.
51. Amp K. Sengupta and Yuewei Zhu, “Metals sorption by chelating polymers: a unique role of ionic strength, AIChE Journal, Vol. 38, No. 1, pp. 153-157, 1992.
52. Dow Chemical U.S.A., “Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195, Hydrometallurgy 12, pp. 387-400, 1984.
53. Claudia V. Diniz, “Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin DOWEX M-4195, Separation Science and Technology 37(14), pp. 3169–3185, 2002.
54. Claudia V. Diniz, “The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions, Hydrometallurgy 78, pp. 147-155, 2005.
55. F.D. Mendes, “Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin, Minerals Engineering 18, pp. 945-954, 2005.
56. F.D. Mendes, “Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption, Int. J. Miner. Process. 77, pp. 53-63, 2005.
57. Li-Chun Lin, Jiunn-Kwei Li, “Removal of Cu (II) and Ni (II) from aqueous solutions using batch and fixed-bed ion exchange processes, Desalination 225, pp. 249-259, 2008.
58. Zaimawati Zainol, “Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748, Hydrometallurgy 99, pp. 175-180, 2009.
59. 陳陵援,林修正,專題報導 生活中的神燈──觸媒,科學發展370期, 2003年10月。
60. Irving Langmu, “The constitution and fundamental properties of solids ang liquids. part I. solids., Constitution of Solids and Liquids, pp. 2221-2295, 1916.
61. M. Jaroniec, “Adsorption on heterogeneous surfaces: the exponential equation for the overall adsorption isotherm, Surface Science 50, pp. 553, 1975.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊