跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊豪
研究生(外文):Jun-HaoHuang
論文名稱:粗氧化鋅以硫酸浸漬之過濾行為
論文名稱(外文):The filtration behavior of crude zinc oxide after sulphuric acid leaching
指導教授:申永輝申永輝引用關係
指導教授(外文):Yun-Hwei Shen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:粗氧化鋅電弧爐集塵灰過濾性質水洗過濾比阻抗
外文關鍵詞:Crude zinc oxideElectric arc furnaceFiltering propertyWater washingSpecific Resistance to Filtration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
粗氧化鋅樣品為鋅含量較高(大於40%)之資源化產品,也富含鐵、鉛等重金屬,極具有回收精煉之價值。其來源為電弧爐集塵灰(EAFD)經旋轉窯法處理(Waelz kiln process)處理後之半成品。隨著台灣電弧爐集塵灰產量不斷增加,許多業者投入粗氧化鋅之產品開發,最後將其賣給下游廠商製作氧化鋅或精煉鋅之處理。
許多廠商以硫酸浸漬粗氧化鋅後,經由過濾方法取其硫酸鋅(濾液)予以純化,但在過濾時,其浸漬後產物常產生過濾性不佳或是難過濾之問題,導致後續精煉純化之困難。
因此,本研究主要針對不同品位之粗氧化鋅樣品經硫酸浸漬後,以成份分析方法、殘渣粒徑之分析及過濾比阻抗分析,以期能歸納其影響過濾性之因素。研究結果顯示,以成份分析方法,大於0.6 N HCl可以破壞鋅鐵尖晶石結構;以粒徑分析方法,發現硫酸鉛殘渣(PbSO4)顆粒主要分佈於10 μm,鋅鐵尖晶石顆粒主要分佈於1~5μm,為造成過濾性不佳之主因。
Crude zinc oxide is the product of the Waelz kiln process for the processing of EAF dust. With increasing amount of EAF dust produced in Taiwan, many company jump into the production and sale of crude zinc oxide to downstream firms for manufacturing of zinc oxide. Crude zinc oxide is a valuable resource with high zinc content (〉40%). it also contains other valuable metals such as lead and iron. Usually the zinc in crude zinc oxide was recovered by sulphuric acid leaching and filtration. However, the filterability of leachate produced by sulphuric acid leaching is very poor.
Therefore, the objective of this study focused on the filterability improvement of leachate produced by sulphuric acid leaching. The filterability was evaluated by parameters such as the residue particle size analysis and Specific Resistance to Filtration(SRF). The results of this study show that using 0.6 N of HCl can destroy the structure of zinc-iron spinel in leachate and the size of residued PbSO4 particles is mainly distributed around 10 μm. The ZnFe2O4 particles mainly distributed in the sze range of 1 ~ 5μm, and is the main cause of poor filterability.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 5
第二章 文獻回顧及理論基礎 6
2.1濕法冶金回收鋅金屬商業化技術 6
2.2粗氧化鋅浸漬後硫酸鉛渣之過濾性質改善 9
2.3集塵灰在水溶液中的抗絮凝及分級 11
2.4集塵灰中的氯離子 12
2.5粗氧化鋅之特性 13
2.5.1氧化鋅 13
2.5.2鋅鐵尖晶石 14
2.5.3鉛化合物 16
2.5.4氯鹽 17
2.6硫酸浸漬之條件 18
2.7過濾比阻測試 21
第三章 研究策略方法與步驟 23
3.1實驗之起始原料 23
3.2實驗裝置及分析儀器 25
3.3實驗方法與步驟 29
3.3.1樣品前處理及成份分析 30
3.3.2粒徑分析 32
3.3.3選擇性的單離分散 34
3.3.4過濾性分析 36
第四章 結果與討論 38
4.1不同品位粗氧化鋅樣品之成份評估 38
4.2粗氧化鋅樣品浸漬前後之產物粒徑分析 44
4.2.1不同品位粗氧化鋅原樣(浸漬前)之粒徑分析 44
4.2.2不同品位粗氧化鋅原樣(浸漬後)之粒徑分析 47
4.3粗氧化鋅樣品的選擇性單離分散 52
4.4過濾性質之分析 57
4.4.1粗氧化鋅原樣之硫酸浸漬過濾 57
4.4.2低品位粗氧化鋅(CZOl)水洗浸漬 60
4.5不同品位粗氧化鋅樣品成分對過濾性之影響 63
第五章 結論 65
參考文獻 69



1.楊金鐘,添加電弧爐煉鋼集塵灰當作製磚原料實廠技術開發, 2009。
2.J.G.M.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. Santos, A.C.F. Vilela, J.B.M. Cunha, Chemical physical structural and morphological characterization of the electric arc furnace dust, Journal of Hazardous Material B, 136, 2006, pp. 953-960.
3.N. Leclerc, E. Meux, J. M. Lecuire, Hydrometallurgical extraction of zinc from zinc ferrites , Hydrometallurgy, 70, 2003, pp. 175-183.
4.蘇茂豐、陳立、黃偉慶、翁明豐,旋轉窯爐渣資源化再利用可行性評估,2002產業環保工程實務技術研討會論文集,第389-399頁,11月7日,台北市。
5.International Iron and Steel Institute, World Steel in Figures 2006.
6.黃亭瑾,電弧爐煉鋼煙塵風化對濕式除氯之影響,碩士論文,國立成功大學礦冶及材料科學研究所,2006。
7.陳偉聖、周瑋珊、吳俊毅、申永輝、蔡敏行,資源再生,工業污染防治季刊第116期,2010。
8.黃清連、吳裕慶,鋅之冶煉法與資源再生,2009中國鑛冶工程學會會刊,第27-37頁,12月。
9.劉瓊芳,回收電爐集塵灰有價物質之技術介紹,工研院環安中心,環安簡訊電子報第五十七期,2005。
10.D. Herrero, P.L. Arias, B. Guemez, V.L. Barrio, J.F. Cambra and J. Reqies, Hydrometallurgical pr ocess development for the production of a zinc sulphate liquor suitable for electrowinning, Minerals Engineering, 23, 2011, pp. 511-517.
11.吳珮綺,由集塵灰及粗氧化鋅以水熱合成一維氧化鋅,碩士論文,國立台北科技大學材料及資源工程系。
12.M.K. Jha, V. Kumar, R.J. Singh, Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling
13.T. Havlik, M. Turzakova, S. Stopic, B. Friedrich, Atmospheric leaching of EAF dust with diluted sulphuric acid, Hydrometallurgy, 77, 2005, pp.41-50.
14.R. A. Shawabken, Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust, Hydrometallurgy, 104, 2010, pp. 61-65.
15.曹姿盈,粗氧化鋅以硫酸浸漬純化時產生硫酸鉛渣之過濾性質改善, 碩士論文,國立成功大學礦冶及材料科學研究所。
16.陳祥瑞,懸浮液之凝聚、分散及其流變性質之研究,碩士論文,國立成功大學礦冶及材料科學研究所。
17.S. Chia-Chi, S. Yun-Hwei, Deflocculation and Classification of Electric Arc Furnace Dust in Aqueous Solution, Separation Science and Technology, 44, 2009, pp.1816-1828.
18.林彥廷,抽氣逆洗法去除粗氧化鋅產品中之氯鹽,2008資源與環境學術研討會論文集。
19.W.-S. Chen, Yun-Hwei Shen, Min-Shing Tsai, Fang-Chih Chang, Removal of chloride from electric arc furnace dust, Journal of Hazardous Materials, 190, 2011, pp.639-644.
20.L. Barreiro, M. Cruells, and A. Roca, Concentration of zinc and lead from electric arc furnace flue dusts, Second International Conference on the Recycling of Metals; Amsterdam; Netherlands; 19-21 Oct, 1994.555
21.吳佳正, 陳偉聖, E. Gock, J. Kahler, and 蔡敏行, 電爐煉鋼集塵灰除氯前處理─台灣與德國案例探討, 第19屆廢棄物處理技術研討會,2004
22.陳偉聖, 周瑋珊, 吳佳正及蔡敏行, 低溫反應性焙燒進行電弧爐煉鋼集塵灰除氯之可行性研究, 中華民國環境工程學會 2006廢棄物處理技術研討會 台灣, 2006.
23.C. C. Venetopoulos and P. J. Rentzeperis, The crystal structure of laurionite, Pb(OH)Cl, Zeitschrift fur Kristallographie, 141, 1975, pp. 246-259.
24.J. Ralph. http://www.mindat.org/min-2343.html
25.H.Y. Sohn, Hydrometallurgical Principles, Encyclopedia of Materials: Science and Technology, 2001, pp. 3976-3981.
26.L. Chung-Lee and T. Min-Shing, A crystal phase study of zinc hydroxide chloride in electric-arc-furnace dust, Journal of Materials Science, 28, 1993, pp. 4562-4570.
27.A. M. Hagni, R. D. Hagni, and C. Demars, Mineralogical Characteristics of Electric Arc Furnace Dusts, Journal of Metals, 43, 1991, pp. 28-30.
28.李宗立, 電弧爐煉鋼煙塵之性質與資源化之研究, 礦冶及材料科學研究所 博士論文: 國立成功大學 1992
29.T. Havlik, B. V. e. Souza, A. M. Bernardes, I. A. H. Schneider, and A. Miskufova, Hydrometallurgical processing of carbon steel EAF dust, Journal of Hazardous Materials, vol. 135, pp. 311-318, 2006.
30.A. Colletta, U. Martini , M. Palchetti and F. Benelli, High purity zinc & ferroalloys recovery from eaf dusts through a combined pyro-hydrometallurgical treatment, International ATS, 6, 2001, pp. 954.
31.S. Moradi, A.J. Monhemius, Mixed sulphide oxide lead and zinc ores: Problems and solutions, Minerals Engineering, 24, 2011, pp. 1062-1076.
32.Z. Yali, Y. Xianjin, L. Xiaobin, Zinc recovery form franklinite by sulphation roasting, Hydrometallurgy, 109, 2011, pp. 211-214.
33.P. Dvorak及J. Jandova, Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, 2005, pp. 29-33.
34.財團法人台灣產業服務基金會曾明加專案副理, 廢水處理污泥調理技術介紹。
35.丹東市百特儀器有限公司http://www.bettersize.com/production/lpsa/bt-9300ht.htm
36.行政院環保署,http://www.niea.gov.tw/niea/WATER/W40751C.htm.
37.F. Farahmand, D. Moradkhani, M. Sadegh Safaezadeh, F. Rashchi, Brine leaching of lead-bearing zinc plant redidues: process optimization using orthogonal array design methodology, Hydrometallurgy, 95, 2009, pp. 316-324.
38.M. Deniz Turan, H. Soner Altundogan, F. Tumen, Recovery of zinc and lead from zinc plant residue, Hydrometallurgy, 75, 2004, pp. 169-176.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top