跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志瑋
研究生(外文):Chih-WeiChang
論文名稱:以MQ無網格數值法分析孔彈性理論之研究
論文名稱(外文):The Numerical Analysis of Poroelastic Theory by Multiquardrics Meshless Method
指導教授:徐國錦徐國錦引用關係
指導教授(外文):Kuo-Chin Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:孔彈性理論無網格法數值方法MQ(multiquardrics)土體變形水壓變化地層下陷應變效應
外文關鍵詞:Poroelastic theoryMeshless method(MQ)MultiquardricsSoil deformationChange in water pressureSubsidenceStrain effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展孔彈性模式之MQ (Multiquardrics)無網格數值方法。研發耦合及非耦合模式無網格法,探討地層之孔隙水壓與位移行為。數值方法應用於(1)均質地層(2)異質地層(3)考慮水文地質參數受到應變效應之非線性問題。研究中推導孔彈性理論解析解,作為數值方法驗證之用。探討水文地質參數對模式之敏感度,並研究應變效應對水力傳導係數、孔隙水壓與位移之影響。結果顯示在一維案例中,無網格模式與解析解比較結果良好,誤差百分比均低於0.07%。MQ無網格方法不但數學推導容易且可達到極小的模擬誤差。耦合模式與非耦合模式,兩者比較結果良好,誤差百分比均於3%以內。水文地質參數中,水力傳導係數對模擬結果影響最顯著,直接影響壓力梯度分佈,同時影響水流速率。楊氏模數則影響土體力學性質,對穩態孔隙水壓並無影響,但影響土體之變形。在考慮應變效應之非線性模式中,越靠近出水邊界,水力傳導係數變化越大,孔隙水壓變化較無應變效應下少2%,而位移量改變僅有0.8%。應變效應敏感度分析顯示,初始水力傳導係數越小,應變效應越顯著。研究結論得到MQ無網格數值方法可充分描述孔隙力學之行為,提供土水交互作用模擬之用。
In this study, multiquardrics(MQ) meshless method is proposed to solve poroelastic problem . Couple and decople models were developed to explore the pore pressure and solid deformation in porous media. The model was applied to cause of (1)homogeneous (2) heterogeneous (3) nonlinear parameters due to strain effect. Analytical solution was derived, for the use of model validation. Sensitivity was performed for hydraulic conductivity, Young’s modulus and effective porosity. The strain effects on hydraulic conductivity, pore pressure and displacement change were also investigated. In 1D case, results of meshless method and analytical solution were compared well, relative error smaller than 0.07%. The results of couple and decouple models were compared. The difference is with a the relative error less than 3%. Sensitivity analysis shows that hydraulic conductivity significantly affects the water pressure gradient distribution and the flow rate; Young’s modulus affects the solid mechanism and deformation but not significantly affects the pore pressure at steady state. In the nonlinear model, the locations more close to Neumann boundary condition, the greater change in hydraulic conductivity. And the change in pore pressure is less 2% than that in no strain effect and the change in displacement is only 0.8%. Sensitivity analysis under strain effect shows that the smaller the initial hydraulic conductivity, the more significant the strain effect is. The multiquardric meshless method is shown to be adequately describe the behavior of the pore mechanics and provides the use for the simulation of soil and water interaction.
目錄 頁次
摘要……………………………………………………………… I
ABTRACT………………………………………………………… II
目錄……………………………………………………………… IV
表目錄…………………………………………………………… VII
圖目錄…………………………………………………………… VIII
第一章 緒論…………………………………………………… 1
1.1研究動機與目的………………………………………… 1
1.2文獻回顧………………………………………………… 3
1.2.1 無網格數值方法………………………………… 3
1.2.2 孔彈性理論……………………………………… 5
1.3 研究流程及步驟………………………………………… 8
第二章 理論介紹……………………………………………… 10
2.1孔彈性理論……………………………………………… 10
2.1.1孔彈性理論之推導……………………………… 10
2.1.2一維孔彈性理論………………………………… 14
2.1.3頂端載重底端不排水邊界之解析解…………… 15
2.1.4頂端載重底端排水邊界之解析解……………… 17
2.2無網格數值方法………………………………………… 20
第三章 無網格模式建構……………………………………… 23
3.1 一維非耦合模式………………………………………… 23
3.1.1 均質地層………………………………………… 23
3.1.2異質地層………………………………………… 26
3.2 一維耦合模式建構……………………………………… 28
第四章 一維孔彈性理論應用………………………………… 32
4.1地層下陷模式建構……………………………………… 32
4.2模擬結果-一維孔彈性理論解析解與無網格法比較…… 35
4.3非耦合模式-異質性地層探討………………………… 41
第五章 耦合模式分析………………………………………… 47
5.1非耦合模式與耦合模式………………………………… 47
5.2地層參數敏感度分析…………………………………… 53
5.3 非線性模式分析……………………………………… 60
5.3.1應變效應對孔隙力學之影響…………………… 60
5.3.2非線性模式模擬結果…………………………… 62
5.3.3應變效應敏感度分析…………………………… 65
第六章 結論與建議…………………………………………… 68
6.1結論……………………………………………………… 68
6.1.1地層下陷模擬與模式驗證……………………… 68
6.1.2耦合模式與非耦合模式比較…………………… 69
6.1.3地層參數敏感度分析…………………………… 69
6.1.4非線性模式分析………………………………… 70
6.2建議……………………………………………………… 71
參考文獻………………………………………………………… 72



表目錄 頁次
表4-1模式驗證中使用之參數設定……………………………… 34
表4-2解析解與數值解於不同深度下的誤差百分比…………… 36
表4-3解析解與數值解於不同時間下之誤差百分比…………… 37
表4-4解析解與數值解於不同時間下的誤差百分比(位移量) … 39
表4-5解析解與數值解於不同深度下的誤差百分比(位移量) … 40
表4-6階變型異質模擬情境表…………………………………… 45
表5-1模式比較中使用之參數設定……………………………… 48
表5-2敏感性分析中使用之參數設定…………………………… 54



圖目錄 頁次
圖1.1研究流程圖………………………………………………… 9
圖2-1 單元體在各方向的應力………………………………… 10
圖2-2 一維度土體與邊界條件設定示意圖,其中F=0(王,2009) 16
圖2-3為rij表示圖………………………………………………… 21
圖3-1 MQ佈點方式……………………………………………… 23
圖3-2於MQ法中,時間步驟間之關係…………………………… 25
圖4-1排水與載重引起地層下陷之水文地質概念模式(王,2009) 32
圖4-2 一維度土體與邊界條件設定示意圖,其中F=0(王,2009) 33
圖4-3 MQ之c值敏感度分析…………………………………… 35
圖4-4頂端載重底端排水狀況下,水壓變化與時間之關係圖… 36
圖4-5頂端載重底端排水狀況下,水壓變化與深度之關係圖… 37
圖4-6頂端載重底端排水狀況下,位移量與深度之關係圖…… 38
圖4-7頂端載重底端排水狀況下,時間與累積位移量關係圖… 39
圖4-8頂端載重底端排水狀況下,時間與絕對位移量關係圖… 40
圖4-9異質性地層模擬邊界及初始條件示意圖………………… 41
圖4-10異質性地層模擬情境一,水力傳導係數變化圖………… 42
圖4-11異質性地層模擬情境一,水壓變化與深度關係………… 42
圖4-12異質性地層模擬情境二,水力傳導係數變化圖………… 43
圖4-13異質性地層模擬情境二,水壓變化與深度關係………… 44
圖4-14 K值階變型異質地層模擬,初始與邊界條件設定……… 45
圖4-15 K值階變型異質地層模擬,穩態下壓力之分布圖……… 46
圖5-1 一維度土體與邊界條件設定示意圖,其中F=0(王,2009) 48
圖5-2頂端載重底端排水狀況下,耦合與非耦合模式比較,
時間與孔隙壓力變化關係圖……………………………………

49
圖5-3頂端載重底端排水狀況下,耦合與非耦合模式比較,
深度與孔隙壓力變化關係圖…………………………………… 50
圖5-4頂端載重底端排水狀況下,耦合與非耦合模式比較,
時間與位移量變化關係圖……………………………………… 51
圖5-5頂端載重底端排水狀況下,耦合與非耦合模式比較,
深度與位移量變化關係圖………………………………………

52
圖5-6 一維度頂端排水模擬示意圖與邊界條件設定(王, 2009) 53
圖5-7不同楊氏模數下,壓力變化量與時間關係……………… 55
圖5-8不同楊氏模數下,位移量與時間關係圖………………… 56
圖5-9不同水力傳係數下,孔隙壓力變化與時間關係圖……… 56
圖5-10不同水力傳係數下,位移量與時間關係圖……………… 57
圖5-11不同孔隙率下,孔隙壓力與時間關係圖………………… 58
圖5-12不同孔隙率下,位移量與時間關係圖…………………… 58
圖5-11 二階段耦合示意圖……………………………………… 60
圖5-12 應變效應下,水力傳導係數變化圖……………………… 62
圖5-13 應變效應與無應變效應,孔隙壓力變化與時間關係比較圖……………………………………………………………… 63
圖5-14 應變效應與無應變效應,絕對位移量變化與時間關係比較圖……………………………………………………………

64
圖5-15為不同初始水力傳導係數,水力傳導係數變化率圖…… 65
圖5-16應變效應下,不同初始水力傳導係數,孔隙壓力變化與時間關係圖……………………………………………………… 66
圖5-17應變效應下,不同初始水力傳導係數,位移量與時間關係圖……………………………………………………………… 67
1.Beavan, J., K. Evans, S. Mousa, and D. Simpson, 1991, Estimating aquifer parametersfrom analysis of forced fluctuations in well level: A example from the Nubian formation near Aswan, Egypt 2. Poroelastic properties, Journal of Geophysical Research, 96(B7), 12139-12160.
2.Biot, M. A., 1941, General theory of three-dimensional consolidation, Journal of AppliedPhysics, 12, 155-164.
3.Biot, M. A., 1956, Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics, 27, 459-467.
4.Biot, M. A., 1964, Theory of buckling of a porous slab and its thermoelastic analogy, Journal of Applied Mechanics, 31, 194-198.
5.Biot, M. A., 1973, Nonlinear and semilinear rheology of porous solids, Journal of Geophysical Research, 78(23), 4924-4937.
6.Bogomolny, A., 1985, Fundamental solution method for elliptic boundary value problems, SIAM Journal on Numerical Analysis, Vol.22, pp.644-669.
7.Booker, J. R., and J. P. Carter, 1986, Long term subsidence due to fluid extraction from a saturated, anisotropic, elastic soil mass, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 39, No. 1, pp. 85-97.
8.Castelletto, N., M. Ferronato, G. Gambolati, M. Putti, and P. Teatini, 2008, Can Venice be raised by pumping water underground? A pilot project to help decide, Water Resources Research, Vol. 44, W01408, doi: 10.1029/2007WR006177.
9.Christensen, N. I., and H. F. Wang, 1985, The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone, Geophysics, 50(2), 207-213.
10.Coussy, O., 2004, Poromechanics, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
11.Duarte, C.A., 1995, A review of some meshless methods to solve partial differential equations, Texas Institute for Computational and Applied Mathematics Report.
12.Farlow S.J. , 1982, Partial Differential Equation for Scientists and Engineers.pp.43-48.
13.Ferronato M, A. Mazzia, G. Pini, G. Gambolati. 2007. A meshless method for axi-symmetric poroelastic simulafions: Numerical study. International Journal for Numerical Methods in Engineering 70(11): 1346-1365.
14.Ferronato, M., G. Gambolati, P. Teatini, and D. Bau, 2006, Stochastic poromechanical modeling of anthropogenic land subsidence, International Journal of Solids and Structures, Vol. 43, No. 11-12, pp. 3324-3336.
15.Freeze, R. A., 1975, A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform, homogeneous media, Water Resources Research, 11(5), 725~741.
16.Gambolati, G., 1974. Second-order theory of flow in three-dimensional deforming media. Water Resources Research 10, 1217–1228.
17.Gambolati, G., P. Teatini, D. Bau, and M. Ferronato, 2000, Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy, Water Resources Research, Vol. 36, No. 9, pp. 2443-2459.
18.Green, D. H., and H. F, Wang, 1986, Fluid pressure response to undrained compression in saturates sedimentary rock, Geophysics, 51(4), 948-956.
19.Green, D. H., and H. F. Wang, 1990, Specific storage as a poroelastic coefficient, Water Resources Research, 26(7), 1631-1637.
20.Hsieh, P.A., 1996, Deformation-induced change in hydraulic head during groud-water withdrawal, Ground Water, Vol.34, No.6, pp.1082-1089
21.Hsu, K.-C., and C.-C. Tung, 2005, On estimating the earthquake-induced changes in hydrogeological properties of the Choshuishi Alluvial Fan, Taiwan, Hydrogeology Journal, 13, 467-480.
22.Karageorghis, A., G. Fairweather, 1999, The method of fundamental solutions for axisymmetric potential problems. International Journal for Numerical Methods in Engineering, Vol.44, pp.1653-1669.
23.Katsurada, M., H. Okamoto, 1996, The collocation points of the fundamental solutions method for the potential problems. Computers and Mathematics with Application, Vol.31, pp.123-137.
24.Kim J. M. 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research 41: W01003. doi: 10.1029/2003WR002941.
25.Kim, J. M., R. R. Parizek, 1997. Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system. Journal of Hydrology202, 231–243.
26.Kumpel, H. J., 1991, Poroelasticity: parameters reviewed, Geophysical Journal International, 105, 783-799.
27.La Rocca, A. and A. Hernandez Rosales, H. Power, 2005. Radial Basis Function Hermite Collocation Approach for the Solution of Time Dependent Convection–Diffusion Problems. Engineering Analysis with Boundary Elements, Vol. 29, No. 4, pp. 359–370.
28.Li, J. and Y. C. Hon, 2004. Domain Decomposition for Radial Basis Meshless Method, Numerical Methods for Partial Differential Equations, Vol. 20, No. 3, pp. 450-462.
29.Li, J. and A. H-D. Cheng, C.-S. Chen, 2003. A Comparison of Efficiency and Error Convergence of Multiquadric Collocation Method and Finite Element Method, Engineering Analysis with Boundary Elements, Vol. 27, No. 3, pp. 251-257.
30.Liu, J., and D. Elsworth, 1999, Evaluation of pore water pressure fluctuation around an advancing longwall face, Advances in Water Resources, 22(6), 633-644.
31.Masterlark, T., C. DeMets, H. F. Wang, O. Sanchez, and J. Stock, 2001, Homogeneous vs heterogeneous subduction zone models: Coseismic and postseismic deformation, Geophysical Research Letters, 28(21), 4047-4050.
32.Mathon, R., R.L. Johnston, 1997, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM Journal on Numerical Analysis., Vol.14, pp.638-650.
33.Matsumoto, N., G. Kitagawa, and E. A. Roeloffs, 2003, Hydrologic response to earthquakes in the Haibara well, central Japan: I. Groundwater-level changes revealed using state space decomposition of atmospheric pressure, rainfall, and tidal responses, Geophysical Journal International, 155(3), 899-913.
34.Noorishad, J., M. Mehran, and T.N. Narasimhan, 1982, On the formulation of saturated-unsaturated fluid flow in deformable porous media, Advance in Water Resources, Vol. 5, pp. 61-62
35.Rice, J. R., and M. P. Cleary, 1976, Some basic stress diffusion solutions for fluid-saturate elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, 14(2), 227-241.
36.Roeloffs, E. A., 1988, Hydrologic precursors to earthquake:A review, Pure and Applied Geophysics, 126, 177-209.
37.Roeloffs, E. A., 1996, Poroelastic techniques in the study of earthquake-related hydrologic phenomena, in Advances in Geophysics, edited by R. Dmowska, Academic, San Diego, Calif, 137, 135-195.
38.Roeloffs, E. A., 1998, Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes, Journal of Geophysical Research, 103(B1), 869-889.
39.Sharan, M. and E.J. Kansa, S. Gupta, 1997. “Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations, Applied Mathematics and Computation, Vol. 84, No. 2-3, pp. 275-302.
40.Tanaka, M. and T. Matsumoto, Y. Suda, 2001. Dual Reciprocity Boundary Element Method Applied to Steady-State Heat Conduction Problem of Functionally Gradient Materials, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol. 67, No. 662, pp. 35-40.
41.Teatini, P., M. Ferronato, G. Gambolati, and M. Gonella, 2006, Groundwater pumping and land subsidence in the Emilia- Romagna coastland, Italy: Modeling the past occurrence and the future trend, Water Resources Research, Vol. 42, W01406, doi:10.1029/2005WR004242.
42.Verruijt, A., 1969, Elastic storage of aquifers, Flow Through Porous Media, Edited by J. M. De Wiest.
43.Wang, H. F., 1993, Quasi-static poroelastic parameters in rock and their geophysical applications, Pure and Applied Geophysics, 141, 269-286.
44.Wang, H.F., 2000. Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press.
45.Wang, J.G., G. R. Liu, P. Lin, 2002, Numerical analysis of Biot’s consolidation process by radial point interpolation method, International Journal of Solids and Structures, Vol.39, pp1557-1573.
46.Wen, P. H., 2010, Meshless local Petrov-Galerkin (MLPG) method for wave propagation in 3D poroelastic solids, Engineering Analysis with Boundary Elements, Vol.34, NO.4, pp.315-323.
47.Young, D. L., C. C. Tsai, K. Murugesan, C. M. Fan, C. W. Chen, 2004, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Element, Vol.28, pp.1463-1473.
48.Young, D. L., S. P. Hu, C. W. Chen, C. M. Fan, K. Murugensan, 2005, Analysis of elliptical waveguides by the method of fundamental solutions, Microwave and Optical Technology Letter, Vol.44, pp.552-558.
49.Young, D. L., C. C. Tsai, Y. C. Lin, C. S. Chen, 2006, The method of fundamental solutions for eigenfrequencies of Plate Vibrations, Computers Material & Continua, Vol.4, pp.1-10.
50.Young, D. L., C. L. Chiu, C. M. Fan, C. C. Tsai, Y. C. Lin, 2006, Method of fundamental solutions for multidimensional stokes equations by the dual-potential formulation, European Journal of Mechanics-B/Fluids,Vol.25, pp.63-73.
51.Young, D. L., C. W. Chen, C. C Tsai, C. M. Fan, 2006, The method of fundamental solutions with eigenfuction expansion method for Nonhomogeneous diffusion equation, Numerical Method for Partial Differential Equaitons,Vol.22, pp.1173-1196.
52.Zerroukat, M. and H. Power, C.S. Chen, 1998. A Numerical Method for Heat Transfer Problems Using Collocation and Radial Basis Functions, International Journal for Numerical Methods in Engineering, Vol. 42, No. 7, pp. 1263-1278.
53.陳弘茂,2008,以無網格法解析非凸領域之位勢問題,國立台灣海洋大學系統工程暨造船學系碩士論文
54.王士榮,2009,序率孔彈系模式之研究,國立成功大學資源工程學系博士論文
55.詹欣方,2011,以無網格法配合指數收斂純量同倫演算法分析反算邊界偵測問題,國立台灣海洋大學河海工程學系碩士論文

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top