跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳清典
研究生(外文):Ching-TienChen
論文名稱:鋇鎂鈷鈮氧化物陶瓷的序化行為與微波性質
論文名稱(外文):Ordering Behavior and Microwave Dielectric Properties in Barium Magnesium Niobate Ceramics
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuen Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:166
中文關鍵詞:微波介電陶瓷序化序化晶域複合鈣鈦礦
外文關鍵詞:microwave dielectricorderingdomaincomplex perovskite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
A(B’1/3 B”2/3)O3 (A = Ba+2; B’ = Ma2+, Co2+; B” = Nb5+) 複合鈣鈦礦型結構陶瓷已被報導B位置陽離子的序化排列行為。當此類型陶瓷在適當的熱處理之下,B’陽離子與B”陽離子將以1與2的數量沿立方晶系的〈111〉方向重複出現,即三方晶系中B位置陽離子的序化。其晶體的對稱性將形成 的空間群,基本單位晶胞亦從立方晶系轉變為三方晶系。
首先,本研究先針對Ba(Mg1/3Nb2/3)O3 (BMN) 和 Ba(Co1/3Nb2/3)O3 (BCN) 陶瓷進行有序-無序的相轉換,以了解此二系統的本質特性。適當的熱處理確實形成了 BMN 和 BCN 陶瓷的序化相,而且退火處理對序化晶域的大小和序化程度有相當的提升。退火處理下BMN 和 BCN 陶瓷的序化程度分別達到 83% 和62%,而其 值可分別達到 64,000 和 36,000。
經比較 BMN 和 BCN 的特性, BMCN 固溶體可進一步地以相對低溫 (1525℃) 並且不須退火處理即可達到不錯的 (40,000) 值和接近零的溫度係數( = 5.4 ppm/℃)。然而隨著鈷的取代增加,會產生較大量的序化晶域,同時也會產生更大量的異相晶域壁(APBs),因此導致了BMCN 固溶體的 值不及經過退火處理的 BMN 樣品。因此,相對少量的鈷取代量 (x = 0 ~ 0.1) 意欲減少BMCN 固溶體中的序化晶域數量和異相晶域壁 (APBs) 的量。而實驗確實得到預測的結果,因此取代量 x = 0.05的樣品即可達到 92% 的序化程度和 43,000 的 值。
動力學的實驗意欲深入了解序化晶域形成的機制與活化能。鈷離子的存在確實使得 BMCN 固溶體中序化相形成的活化能下降。也因為較低的活化能,使得有序-無序的相轉換溫度降低、序化晶核大量產生、序化程度增加。但是序化晶核成核之後,退火處理中的序化主要機制為序化晶核的成長。所以,若起始的序化晶核太多會造成後來序化晶核成長的限制。也因此,有序-無序相轉換的速率常數在較大的鈷取代量的樣品中卻相對較低。有序-無序的相轉換為一個温度區間。在此温區內,退火溫度越高,序化程度反而會下降。而且此温區的範圍大小視退火時間長短而不同。無序相在相轉換溫度 (TC) 之下有動力學的優勢而先形成,所以要得大量穩定的序化相,退火處理是必要的。並且退火處理的條件應該依照有序-無序相轉換温度區而設定,以達到最佳的序化程度。

The complex perovskite ceramic with A(B’1/3 B”2/3)O3 structure has been reported the behaviour of ordered arrangement of B-site cations. If the ceramic is undergone an appropriate heating condition, B-site cations would be 1:2 ordered into a hexagonal cell, with one B’ layer and two B’’ layers repeated along the 〈111〉 direction of the parent perovskite cubic cell. Therefore, the symmetry will become , and the primary unit cell will become from original cubic structure to the trigonal one.
In the first place, this study examined the ordered-disordered phase transition for Ba(Mg1/3Nb2/3)O3 (BMN) and Ba(Co1/3Nb2/3)O3 (BCN) ceramics. An appropriate heating treatment leads to the 1:2 ordered phase, and the annealing treatment show a significant effect on the ordered domain size and the ordering degree. Consequently, the value is dominated by the ordering degree and achieve as high as 64,000 for BMN specimens and 36,000 for BCN specimens.
Furthermore, BMCN solid solution (x=0.5) is devised to exhibit a high value (40,000) and a near-zero (5.4 ppm/℃) at a relatively lower sintering temperature (1525℃) without annealing treatment. However, the cobalt substitution induces more ordered domains, and therefore, more anti-phase boundaries occur and result in a less value than that of BMN ceramics with annealing treatment.
A relatively small amount (x = 0 ~ 0.1) of cobalt substitution really lead to less ordered nuclei and volume of anti-phase domain boundaries. Therefore, the specimen at x = 0.05 without annealing treatment also exhibits a higher value of 43,000 with an ordering degree of 92%.
The existence of cobalt cations causes the decrease in the activation energy ( ) for the formation of ordered phases in BMCN ceramics. Therefore, a lower transition temperature (TC) and a greater number of ordered nuclei are deserved. However, the main mechanism for the phase transition during the annealing treatment is the domain growth, and a greater number of ordered nuclei would cause the limitation to the domain growth. Therefore, the rate constant (k) of phase transition decreased with the increased cobalt substitution at a higher temperature. There is a temperature range of ordered-disordered phase transition, in which the ordering degree falls as the temperature increases. Moreover, the width of the temperature range is dependent on the annealing time. The disordered phase at a temperatures lower than TC is a metastable one, and exists due to the kinetics advantage. The annealing treatment is necessary to accelerate the phase transition to achieve the stable ordered phase, and the temperature range for the phase transition is an important guide to have the appropriate condition for annealing treatment.
Contents

Chinese Abstract Ⅰ
English Abstract III
Thanks V
Contents VI
Figure Captions VIII
Table Captions XIII
Chapter 1 General Introduction 1
Chapter 2 Theories and Literature Survey 3
2-1 Structure and Ordering Phase of Complex Perovskites A(B’1/3B”2/3)O3 3
2-2 The Effect of Heating Treatment on Ordering Degree 14
2-3 Tolerance Factor in Perovskite Ceramics 21
2-4 Domain Boundary in Complex Perovskite 27
2-5 Structure - Quality Factor (Q) Relations 33
2-6 Structure - Temperature Coefficient of Resonant Frequency (τf ) Relations 36
2-7 Structure - Relative Permittivity (εr ) Relations 40
2-8 Raman Spectra in Ordering Complex Perovskite 42
Chapter 3 Effect of Annealing Process on the Ordering Degree and the QF Factor of BaMgNb and BaCoNb Ceramics 46
3-1 Introduction 46
3-2 Experimental Procedure 47
3-3 Result 51
3-4 Discussion 73
3-5 Conclusion 77
Chapter 4 Structure and Microwave Dielectric Property Relations in Barium Cobalt Magnesium Niobate Ceramics 81
4-1 Introduction 81
4-2 Experimental Procedure 83
4-3 Result 86
4-4 Discussion 98
4-5 Conclusion 102
Chapter 5 Effect of Small Amount of Cobalt Substitution on Structure and Microwave Dielectric Properties of Barium Magnesium Niobate Ceramics 103
5-1 Introduction 103
5-2 Experimental Procedure 104
5-3 Result 107
5-4 Discussion 118
5-5 Conclusion 126
Chapter 6 Ordering Kinetics of Barium Magnesium Cobalt Niobate Ceramics 128
6-1 Introduction 128
6-2 Experimental Procedure 130
6-3 Result 133
6-4 Discussion 147
6-5 Conclusion 154
Chapter 7 Summary 155
Chapter 8 Future Work 157
Reference 158
Reference

1.L. Chai, M. A. Akbas, P. K. Davies, and J. B. Parise, “Cation ordering transformation in Ba(Mg1/3Ta2/3)O3 – BaZrO3 Perovskite Solid Solutions, Mater. Res. Bull., 32 [9] 1261-69 (1997).
2.L. Chai and P. K. Davies, “Formation and Structural Characterization of 1:1 Ordered Perovskite in the a(Zn1/3Ta2/3)O3 – BaZrO3 System, J. Am. Ceram. Soc., 80 [12] 3193-98 (1997).
3.J. Chen, H. M. Chan, and M. P. Harmer, “Ordered Structure and Dielectric Properties of Undoped and La/Na-Doped Pb(Mg1/3Nb2/3)O3, J. Am. Ceram. Soc., 72 [4] 593-98 (1989).
4.P. K. Davis and J. Tong, “Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics, J. Am. Ceram. Soc., 80, 1727–1740 (1998)
5.E. Schlömann, “Dielectric losses in ionic crystals with disordered charge distributions, Phys. Rev., 135, A413–A419 (1964)
6.K. Tochi and N. Takeuchi, “Two-Mode Behavior in Complex Perovskite Materials, J. Am. Ceram. Soc., 72 [1] 158-160 (1989).
7.H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Dielectric and Structural Characteristics in Barium Lanthanum Magnesium Niobate, J. Am. Ceram. Soc., 83 [4] 937-42 (2000).
8.M. A. Akbas and P. K. Davies, “Cation Ordering Transformation in the Ba(Zn1/3Nb2/3)O3-La(Zn2/3Nb1/3)O3 System, J. Am. Ceram. Soc., 81 [4] 1061-64 (1998).
9.A. Dias, V. S. T. Ciminelli, F. M. Matinaga, and R. L. Moreira, Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics. J. Eur. Ceram. Soc., 21, 2739–68 (2001).
10.C. H. Lu and C. C. Tsai, “Reaction kinetics, sintering characteristics, and ordering behavior of microwave dielectrics: barium magnesium tantalate, J. Mater. Res., 11, 1219–1227 (1996).
11.B. E. Warren, “X-Ray Diffraction. Dover Publication, New York, 1969 p. 208..
12.B. D. Cullity, “Elements of X-Ray Diffraction, Addison-Wesley Publishing, Reading, MA, 1978 pp. 139, 520 and 524.
13.H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects, J. Euro. Ceram. Soc., 26, 1775-1780 (2006).
14.M. A. Akbas and P. K. Davies, “Structure and Dielectric Properties of the Ba(Mg1/3Nb2/3)O3-La(Mg1/3Nb2/3)O3 System, J. Am. Ceram. Soc., 81 [8] 2205-2208 (1998).
15.F. Galasso and J. Pyle, “Preparation and Study of Ordering in A(B'0.33Nb0.67)O3 Perovskite-type Compounds, J. Phys. Chem., 67 [7] 1561-1562 (1963).
16.H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3, Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
17.K. S. Hong, I. T. Kim, and C. D. Kim, The Order-Disorder Formation in the Complex Perovskite Compounds, Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3, J. Am. Ceram. Soc. 79 [12] 3218-3224 (1996).
18.I. Molodetsky and P. K. Davies, “Effect of Ba(Y1/2Nb1/2)O3 and BaZrO3 on the cation order and properties of Ba(Co1/3Nb2/3)O3microwave ceramics, J. Eur. Ceram. Soc., 21 [15] 2587-2591, (2001).
19.U. Treiber and S. Kemmler-Sack, “Über Ordnungs-Unordnungsphänom- -ene bei Sauerstoff perowskiten vom Typ A3BM2O9 (German), J. Solid. State Chem., 43, 51-62, (1982).
20.T. Kolodiazhnyi and A. Petric, “ Synthesis and Dielectric Properties of Barium Tantalates and Niobates with Complex Perovskite Structure, J. Mater. Res., 17 [12] 3182-3189 (2002).
21.B. P. Burton, “Empirical Cluster Expansion Model of Cation Order-Disorder in A(B’1/3B’’2/3)O3 Perovskites, Phys. Rev. B, 59, 6087-6091 (1999).
22.B. P. Burton, “Why Pb(BB’’)O3 Perovskite disorder at a lower temperature than Ba(B,B’)O3 Perovskites, Phys. Rev. B, 60, 12542-12545 (1999).
23.T. Takahashi, E. J. Wu, Anton Van Der Ven and G. Ceder, “First-principles Investigation of B-site Ordering in Ba(MgxTa1-x)O3 Microwave Dielectrics with the Complex Perovskite Structure, Jpn. J. Appl. Phys., 39, 1241-1248 (2000).
24.T. Takahashi, “First-principles Investigation of the Phase Stability for Ba(B1/3′2+B2/3′′5+)O3 Microwave Dielectrics with the Complex Perovskite Structure, Jpn. J. Appl. Phys., 39, 5637-5641 (2000).
25.A. Putnis, Introduction to mineral science, Cambridge University Press, (1992).
26.P. M. Mallinson, J. B. Claridge, M. J. Rosseinsky, R. M. Ibberson, J. P. Wright, and A. N. Fitch, “High Temperature Processing of Ba3ZnTa2O9: an In situ Study Using Synchrotron X-ray Powder Diffraction, Chem. Mater., 19, 4731-4740 (2007).
27.P. M. Mallinson, J. B. Claridge, and M. J. Rosseinsky, “Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction, Applied Physics letters 91, 222901 (2007)
28.J. Venkatesh, V. Sivasubramanian, V. Subramanian and V.R.K. Murthy, “Far-IR reflectance study on B-site disordered Ba (Zn1/3Ta2/3)O3 dielectric resonator, Mater. Res. Bull., 35 [8] 1325-1332 (2000).
29.I. Qazi, I. M. Reaney, and W. E. Lee, “Order–disorder phase transition in Ba(Zn1/3Ta2/3)O3, J. Eur. Ceram. Soc., 21 [15] 2613-2616 (2001).
30.I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor, Jpn. J. Appl. Phys., 33, 3984-3990 (1994).
31.A. M. Glazer, “The Classification of Tilted Octahedra in Perovskite, Acta Cryst, B28, 3384-3392 (1972).
32.A. M. Glazer, “Simple Ways of Determining Perovskite Structure, Acta Cryst, A31, 756-762 (1975).
33.D. I. Woodward* and I. M. Reaney, “Electron diffraction of tilted perovskites, Acta Cryst, B61, 387-399 (2005).
34.H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. h. Paik, S. Nahm, and J. D. Byun, “Two Types of Domain Boundaries in Lanthanum Magnesium Niobate, J. Am. Ceram. Soc., 83 [11] 2875-2877 (2000).
35.H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature, J. Am. Ceram. Soc., 83 [4] 943-945 (2000).
36.H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure Observation in Barium Calcium Magnesium Niobate, J. Am. Ceram. Soc., 83 [9] 2267-2272 (2000).
37.H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure and Dielectric Properties of Barium Strontium Magnesium Niobate, J. Am. Ceram. Soc., 84 [9] 2105-2110 (2001).
38.C. J. Howard and H. T. Stokes, Structures and Phase Transition in perovskite - a Group theoretic Approach, Acta. Cryst. A61, 93-111 (2005)
39.I. M. Reaney and R. Ubic, “Dielectric and Structural Characteristics of Perovskites and Related Material as a Function of Tolerance Factor, Ferroelectric, Vol. 228, 23-38 (1999).
40.H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. h. Paik, S. Nahm, and J. D. Byun, “ Microstructural Characteristics of Strontium Magnesium Niobate, J. Am. Ceram. Soc., 84 [12] 3032-3036 (2001).
41.M. A. Akbas and P. K. Davies, “Ordering-Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 System, J. Am. Ceram. Soc., 81 [3] 670–676 (1998).
42.R. I. Scott, M. Thomas and C. Hampson, “Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator application, J. Euro. Ceram. Soc., 23, 2467-2471 (2003).
43.L. C. Tien, C. C. Chou, and D. S. Tsai, “Ordered Structure and Dielectric Properties of Lanthanum-Substituted Ba(Mg1/3Ta2/3)O3, J. Am. Ceramic. Soc., 83 [8] 2074-2078 (2000).
44.H. S. Park, K. H. Yoon, and E. S. Kim, Relationship between the Bond Valence and the Temperature Coefficient of the Resonant Frequency in the Complex Perovskite (Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3, J. Am. Ceram. Soc., 84, 99–103 (2001).
45.M. W. Lufaso, “Crystal Structure, Modelling, and Dielectric Property Relationships of 2:1 Ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) Perovskites, Chem. Mater., 16, 2148–2156 (2004).
46.R. D. Shannon, “Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348-366 (1993).
47.I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. M. Bhalla, “Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3, J. Phys. Chem. Solids., 59, 181–195 (1998).
48.B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy, J. Am. Ceram. Soc., 78 [11] 3117-3120 (1995).
49.C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of microwave properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy, J. Appl. Phys. 94, 3360-3364 (2003).
50.Thmura, D. A. Sagala and K. Wakino, “Lattice vibration of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure, Jpn. J. Appl. Phys., 25 [6] 787-791 (1986).
51.H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, “Improved High-Q Dielectric Resonator with Complex Perovskite Structure, J. Am. Ceram. Soc., 67 [4] C59-61 (1984).
52.I. M. Reaney, P. L. Wise, I. Qazi, C. A. Miller, T. J. Price, D. S. Cannell, D. M. Iddles, M. J. Rosseinsky, S. M. Moussa, M. Bieringer, L. D. Noailles, and R. M. Ibberson, “Ordering and quality factor in 0.95BaZn1/3Ta2/3O3–0.05SrGa1/2Ta1/2)O3 production resonators, J. Euro. Ceram. Soc., 23, 3021-3034 (2003).
53.I. M. Reaney, Y. Iqbal, H. Zheng, A. Feteira, H. Hughes, D. Iddles, D. Muir, and T. Price, “Order–disorder behaviour in 0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3–0.1Ba(Ga0.5Ta0.5)O3 microwave dielectric resonators, J. Euro. Ceram. Soc., 25, 1183-1189 (2005).
54.S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Znl/3Ta2/3)03 ceramics with low dielectric loss at microwave frequencies, J. Am. Ceram. Soc., 66 [6] 421-423 (1983)
55.H. Masumoto, H. Tamura, and K. Wakino, “Ba(Mg, Ta)O3-BaSnO3 High-Q Dielectric Resonator, Jpn. J. Appl. Phys., 30, 2347-2349 (1991).
56.S. B. Desu and H. M. O’Bryan, “Microwave loss quality of Ba(Zn1/3Ta2/3)O3 ceramics., J. Am. Ceram. Soc., 68, 546-551 (1985).
57.M. W. Lufaso, E. Hopkins, S. M. Bell, and A. Llobet, “Crystal Chemistry and Microwave Dielectric Properties of Ba3MNb2-xSbxO9 (M = Mg, Ni, Zn), Chem. Mater., 17, 4250-4255 (2005).
58.H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, and Y. W. Song, “Microstructural Observations in Barium Calcium Magnesium Niobate,: J. Am. Ceram. Soc., 83, 2267-2272 (2000).
59.C. L. Huang, R. Y. Yang, and M. H. Weng, “Dielectric Properties of CaTiO3–Ca(Mg1/3Nb2/3)O3 Ceramic System at Microwave Frequency, Jpn. J. Appl. Phys., 39, 6608-6611 (2000).
60.C. L. Huang and R. J. Lin, “Liquid Phase Sintering and Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Ceramics, Jpn. J. Appl. Phys., 41, 712-716 (2002).
61.K. Sasazawa and N. Yamaoka, “High-Q Dielectric Resonator Sintered at Low Firing Temperature, Jpn. J. Appl. Phys., 24 (1985) Suppl. 24-2, p. 1022
62.C. C. You, C. L. Huang, C. C. Wei, and J. W. Huang, “Improved High-Q Dielectric Resonator Sintered at Low Firing Temperature, Jpn. J. Appl. Phys., 34, 11911–11915 (1995).
63.C. W. Ahn, S. Nahm , Y. S Lim, W. Cho, H. M. Park, and H. J. Lee, “Microstructure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3 Ceramics, Jpn. J. Appl. Phys., 41, 5277–5280 (2002).
64.C. W. Ahn, H. J. Jang, S. Nahm, H. M. Park, and H. J. Lee, “Effects of microstructure on the microwave dielectric properties of Ba(Co1/3Nb2/3)O3 and (1-x)Ba(Co1/3Nb2/3)O3–xBa(Zn1/3Nb2/3)O3 ceramics, J. Eur. Ceram. Soc., 23, 2473-2478 (2003).
65.A. G. Belous, O. V. Ovchar, A. V. Kramarenko, B. Jancar, J. Bezjak, and D. Suvorov, “Effect of Nonstoichiometry on the Structure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3, Inorg. Mater., 46, 529-533 (2010).
66.S. Nomura, “Ceramics for microwave dielectric resonator, Ferroelectrics 49, 61-70 (1983).
67.M. W. Lufaso, “Crystal Structure, Modelling, and Dielectric Property Relationships of 2:1 Ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) Perovskites, Chem. Mater., 16, 2148–2156 (2004).
68.C. T. Chen, C. Y. Huang, Y. M. Lin, and C. T. Lee, “Structure and microwave dielectric property relations in barium cobalt magnesium niobate ceramics, Jpn. J. Appl. Phys., 24, 0915031-0915036 (2011).
69.H. Wu and P. K. Davies, “Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: I. substitution of Ba3W2O9, J. Am. Ceram. Soc., 89 [7] 2239-2249 (2006).
70.M. S. Fu, X. Q. Liu, X. M. Chen, and Y. W. Zeng, “Cation ordering and domain boundaries in Ca[(Mg1/3Ta2/3)1-xTix]O3 microwave dielectric ceramics, J. Am. Ceram. Soc., 91 [8] 2581-2587 (2008).
71.I. M. Reaney, E. Colla, and N. Setter, “Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor, Jpn. J. Appl. Phys., 33, 3984-3990 (1994).
72.T. Hiuga and K. Matsumoto, “Ordering of Ba(B1/3, B2/31)O3 Ceramics and Their Microwave Dielectric Properties, Jpn. J. Appl. Phys., 28, 56-58 (1989).
73.D. J. Barber, K. M. Moulding, J. Zhou, and M.Q. Li, “Structural Order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Ceramics J. Mater. Sci., 32 [6] 1531-1544 (1997).
74.I. M. Reaney, and D. Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile, J. Am. Ceram. Soc., 89 [7] 2063-2072 (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top