跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡奕光
研究生(外文):Yi-KuangChien
論文名稱:BaTiO3-(Bi0.5Na0.5)TiO3 系統之晶體結構、顯微結構、及介電性質之研究
論文名稱(外文):Crystal structure, microstructure, and dielectric properties of BaTiO3-(Bi0.5Na0.5)TiO3 system
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:鈦酸鋇(Bi0.5Na0.5)TiO3介電常數溫度-電容曲線
外文關鍵詞:barium titanatetemperature coefficient of capacitance curve(Bi0.5Na0.5)TiO3dielectric properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中對於其晶體結構、顯微結構及介電性質之影響。由實驗結果顯示,可在煅燒條件為 800℃/3 h 下,可合成出單一相 BaTiO3-(Bi0.5Na0.5)TiO3 粉末,並由 XRD 分析可判斷粉末為正方晶相之結晶結構,隨著 (Bi0.5Na0.5)TiO3 添加量增加,發現 c 軸縮短,a 軸伸長,正方性下降。藉由觀察燒結收縮曲線,可知添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中可以幫助燒結,添加量 2、5、10 與 20 mol% 分別可在 1200℃/3 h 和1300℃/3 h 條件下可獲得緻密的 BaTiO3-(Bi0.5Na0.5)TiO3 陶瓷體,其晶粒大小可控制小於 1 μm 內,且相對密度達 95% 以上,而添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中可令居禮溫度有效提升至 140℃ 以上之外,但同時會令介電常數下降,且無法有效令電容變化率降低,因此後續在 2 mol% (Bi0.5Na0.5)TiO3 之樣品添加 0.5 與 1.5 mol% MgO,發現添加 MgO 有幫助燒結之效果,可令燒結溫度降低,添加量 0.5 與 1.5 mol% 分別可在 1250℃/3 h 和1200℃/3 h 條件下可獲得緻密的 BaTiO3 陶瓷體,添加量 0.5 與 1.5 mol% MgO 分別在 1200℃/3 h 和1150℃/3 h 之樣品具弛緩體特性,Tc 與 To-t 兩個相轉換溫度相當接近,所以令兩相轉換溫度間之介電常數較高,而由於相轉換溫度區間外的電容值較低,因此電容變化率無法有效降低。添加量 0.5 與 1.5 mol% MgO 分別在 1200℃/3 h 和1150℃/3 h 時,不具弛緩體特性,樣品之 TCC 曲線隨 MgO 增加有平坦之趨勢,在 1.5 mol% MgO 時可接近 X8R 規格。
In this study crystal structure, microstructure and dielectric properties of BaTiO3-(Bi0.5Na0.5)TiO3 were investigate. Various (Bi0.5Na0.5)TiO3 were added into BaTiO3 powders to change the Curie temperature. As the results, single phase of tetragonal BaTiO3-(Bi0.5Na0.5)TiO3 powders has been synthesized under the condition of 800℃/3 h. The tetragonality and spontaneous polarization decreases as the (Bi0.5Na0.5)TiO3 content increases. (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (x = 0, 2, 5, 10, 20) was sintered under the condition of 1200℃/3 h and 1300℃/6 h, respectively, by conventional sintering. The Tc (Curie temperature) increases with the more (Bi0.5Na0.5)TiO3 content﹐but the dielectric constant decreases.
Extra 0.5 and 1.5 mol% MgO were added into BaTiO3-(Bi0.5Na0.5)TiO3 powders (BNT content = 2 mol%). As the MgO content was increased, the sintering temperature was decreased. In the case of 0.5 and 1.5 mol% MgO addition, the sintered bulk was obtained under the condition of 1200℃/3 h and 1250℃/3 h, respectively. With Mg2+ occupied into Ti site, the charged oxygen vacancies generated. Because it can lead deformation of crystal structure, the addition of MgO flattened the Temperature Coefficient of Capacitance curve.

摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 序論 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 鈦酸鋇晶體結構及性質 3
2-2 鈦酸鋇陶瓷體之介電性質的影響因素 6
2-2-1 內應力對介電-溫度曲線之影響 6
2-2-2 正方性對介電-溫度曲線之影響 7
2-2-3 添加物對介電-溫度曲線之影響 9
2-2-4 密度對介電-溫度曲線之影響 9
2-2-5 晶粒大小對介電-溫度曲線之影響 10
2-3 (Bi0.5Na0.5)TiO3 之晶體結構以及鐵電、壓電性質 13
2-4 添加 (Bi0.5Na0.5)TiO3 對 BaTiO3 之影響 17
2-4-1 添加 (Bi0.5Na0.5)TiO3 對 BaTiO3 晶體結構之影響 18
2-4-2 添加 (Bi0.5Na0.5)TiO3 對 BaTiO3 顯微結構之影響 21
2-4-3 添加(Bi0.5Na0.5)TiO3對BaTiO3介電性質之影響 22
2-5 不同添加物對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 25
2-5-1 添加 MgO 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 26
2-5-2 添加 BiNbO4 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 28
2-5-3 添加 Nb2O5 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 30
2-5-4 添加 Co3O4 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 31
2-5-5 添加 ZnO 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 35
2-5-6 其它添加物對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 36
第三章 實驗方法與流程 39
3-1 起始原料 39
3-2 實驗方法與實驗流程 39
3-2-1 粉末製備 39
3-2-2 粉末之熱差/熱重分析 43
3-2-3 陶瓷體製備和燒結收縮量測 44
3-2-4 燒結條件測試 44
3-3 材料分析 44
3-3-1 X光粉末繞射分析 44
3-3-2 晶格常數分析 46
3-3-3 晶體結構分析 46
3-3-4 掃描式電子顯微鏡 49
3-3-5 陶瓷體之密度量測 50
3-4 性質分析 50
3-4-1 陶瓷體樣品準備與介電常數量測 50
3-4-2 溫度-電容曲線量測 51
第四章 結果與討論 52
4-1 起始粉末之熱差 / 熱重分析 52
4-2 煅燒粉末之材料分析 54
4-2-1 結晶相分析 54
4-2-2 微結構分析 56
4-2-3 晶格常數計算 58
4-2-4 Rietveld method 晶體結構分析 61
4-3 陶瓷體分析 68
4-3-1 燒結收縮量測 68
4-3-2 陶瓷體之微結構與密度變化 70
4-4 陶瓷體之介電常數及溫度-電容曲線分析 77
4-4-1 陶瓷體之室溫介電常數 77
4-4-2 陶瓷體之溫度-電容曲線分析 79
4-5 添加 MgO 對 BaTiO3-(Bi0.5Na0.5)TiO3 之影響 81
4-5-1 添加 MgO 對 BaTiO3-(Bi0.5Na0.5)TiO3 燒結之影響 81
4-5-2 添加 MgO 對 BaTiO3-(Bi0.5Na0.5)TiO3 微結構之影響 83
4-5-3 添加 MgO 對 BaTiO3-(Bi0.5Na0.5)TiO3 介電性質之影響 90
第五章 結論 94
附錄 A 96
附錄 B 98
參考文獻 99

1. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York, 18 [1], 1979.
2. P. Hofmann, Solid State Physics: An Introduction, John Wiley & Sons, New York, 2008.
3. B. Tang, S. R. Zhang, Y. Yuan, X. H Zhou, and Y. S Llang, “Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics, Sci. China Ser. E-Tech. Sci., 51 [9], 1451-1456, 2008.
4. H. S. Young, and H. H. Young, “Effects of Rare-Earth Oxides on Temperature Stability of Acceptor-Doped BaTiO3. Jpn. J. Appl. Phys, 44 [8], 6143–6147, 2005.
5. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate. J. Am. Ceram. Soc., 49 [1], 33-36, 1966.
6. K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis Jap. J. Appl. Phys., 48 [9], 09KC05-09KC05-4, 2009.
7. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System, Jap. J. Appl. Phys., 46 [10B], 6999-7004, 2007.
8. Q. Feng, and C. J. McConville, “Weak-Beam Dark-Field Microscopy of Complex Stress States in X7R-Type BaTiO3 Dielectric Core–Shell Structures, J. Am. Ceram. Soc., 87 [10], 1945-1951, 2004.
9. G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics, J. Appl. Phys., 58 [4], 1619-1625, 1985.
10. M. H. Frey, and D. A. Payne, “Grain-size effect on structure and phase transformations for barium titanate, Ame. Phys. Soc., 54 [5], 3158-3168, 1996.
11. D. Hennings and A. Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics, J. Am. Ceram. Soc., 65 [11], 539-544, 1982.
12. T. R. Armstrong, L. E. Morgens, A. K. Maurice, and R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics, J. Am. Cerum. Soc., 72 [4], 605-11, 1989.
13. R. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W Hackenberger, and S. E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics, Jpn. J. Appl. Phys., 40 [10], 5999-6002, 2001.
14. T. T. Fang, H. L. Hsieh, and F. S. Shiau, “Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate J. Am. Ceram. Soc., 76 [5], 1205–1211, 1993.
15. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition, Sov. Phys.-Solid State, 2 [11], 2651-2654, 1961.
16. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3, J. Phys. Chem. Solids, 62, 1271-1276, 2001.
17. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Cryst., B58, 168-178, 2002.
18. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 45 [9B], 7409-7412, 2006.
19. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds, Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, 1960.
20. 吳朗,電子陶瓷-介電,全欣科技圖書,1994。
21. R. E. Eitel, C. A. Randall, T. R. Shrout, and P. W. Rehrig, “New high temperature Morphotropic phase boundary piezoelectric based on Bi(Me)O3-PbTiO3 ceramics, Jpn. J. Appl. Phys., 40, 5999-6002, 2001.
22. B. Tang, S. R. Zhang, X. H. Zhou, Y. Yuan and L. B. Yang,“Preparation and modification of high Curie point BaTiO3-based X9R ceramics, J. Electroceram, 25, 93–97, 2010.
23. L. X. Li, Y. M. Han, P. Zhang, C. Ming and X. Wei, “Synthesis and characterization of BaTiO3-based X9R ceramics, J. Mater. Sci., 44, 5563–5568, 2009.
24. Y. Yuan, S. R. Zhang, X. H. Zhou, B. Tang and B. Li, “High-temperature capacitor materials based on modified BaTiO3, J. E. Mater., 38, 5, 2009.
25. H. D. Li, C. D. Feng and W. L. Yao, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition, Materials Letters, 58, 1194– 1198, 2004.
26. Y. Yuan, M. Du, S. Zhang and Z. Pei, “Effects of BiNbO4 on the microstructure and dielectric properties of BaTiO3-based ceramics, J. Mater. Sci., 20, 157–162, 2009.
27. J. Suchanicz, J. Kusz and H. Bohm, “Structural and electric characteristics of (Na0.5Bi0.5)0.50Ba0.50TiO3 and (Na0.5Bi0.5)0.20Ba0.80TiO3 ceramics, Materials Science and Engineering, B97, 154-159, 2003.
28. L. Gao, Y. Huang, Y. Hu and H. Du, “Dielectric and ferroelectric properties of (1−x)BaTiO3-xBi0.5Na0.5TiO3 ceramics, Ceramics International, 33, 1041–1046, 2007.
29. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchia and T. Okuda, “The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3, Journal of the European Ceramic Society, 19, 1043-1046, 1999.
30. Y. Yuan, X. H. Zhou, B. Li and S. R. Zhang, “ Effects of BiNbO4 and Nb2O5 additions on the temperature stability of modified BaTiO3, Ceramics–Silikáty , 54[3], 258-262, 2010.
31. D. Hennings and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3, Journal of the American Ceramic Society, 67, 4, 1984.
32. H. I. Hsiang, L. T. Mei and Y. J. Chun, “Dielectric properties and microstructure of Nb-Co codoped BaTiO3–(Bi0.5Na0.5)TiO3 Ceramics, J. Am. Ceram. Soc., 92[11], 2768–2771, 2009.
33. H. Chazono and H. Kishi, “Sintering characteristics in BaTiO3–Nb2O5–Co3O4 ternary system: I, electrical properties and microstructure, J. Am. Ceram. Soc., 82[10], 2689–2797, 1999.
34. X. Xu and G. E. Hilmas, ‘‘Effects of Ba6Ti17O40 on the dielectric properties of Nb-doped BaTiO3 ceramics,’’ J. Am. Ceram. Soc., 89[8], 2496–2501, 2006.
35. Y. Park, Y. H. Kim and H. G. Kim, “The effect of grain size on dielectric behavior of BaTiO3 based X7R materials, Mater. Lett., 28, 101-106, 1996.
36. K. Sakata, T. Takenaka and Y. Naitou, “ Phase-relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3-PbTiO3, Ferroelectrics, 7, 347-349, 1974.
37. 李瑋志,(Bi0.5Na0.5)TiO3 無鉛壓電陶瓷系統之結構與介電性質之關聯性,國立成功大學資源工程研究所博士論文,民國九十八年。
38. L. Wu, M. C. Chure, K. K. Wu, W. C. Chang, M. J. Yang, W. K. Liu, and M. J. Wu, “Dielectric properties of barium titanate ceramics with different materials powder size, Ceram. Intern., 35[3], 957–960, 2009.
39. S. W. Kwon, and D. H. Yoon, “Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment,“J. Eur. Ceram. Soc., 27[1], 247–252, 2007.
40. J. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3, Japanese Journal of Applied Physics, 43[8], 5373–5377, 2004.
41. T. Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3. J. Am. Ceram. Soc., 83[1] , 107–12, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊