跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘建邦
研究生(外文):Chien-PangPan
論文名稱:利用破裂面網路模式及透水係數張量探討地下水流動及溶質傳輸之研究
論文名稱(外文):Study of Fracture Network Model with Crack Permeability Tensor on Flow and Transport in Fractured Rock
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:破裂岩體破裂面滲流湧水隧道雪山隧道地下水破裂面網路模式透水係數張量污染物傳輸蘭嶼
外文關鍵詞:Fractured rock massFractureSeepageTunnelSyueshan tunnelGroundwaterFracture network modelCrack permeability tensorSolute transportLan-Yu island
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為利用二維破裂面網路模式及三維當量破裂岩體模式探討地下水流動及溶質傳輸行為,第一部分先以二維隨機離散破裂面程式TUNFLOW為基礎,以序率方法產生隨機模擬數值,統計模擬結果及分析破裂面露頭與滲流量之相關性,建立由露頭數目推估隧道湧水量之方法,並應用雪山隧道實際數據進行驗證。第二部分則運用透水係數張量之觀念,建立三維當量破裂岩體模式,並引用蘭嶼地區資料進行探討。
二維隨機離散破裂面模擬之結果顯示,地下水流通過破裂面網路時,將於較易通過之連結破裂面形成水力路徑,故破裂面網路存在著有效及無效水力破裂面。破裂面密度及長度為控制有效露頭數之最主要因素,由有效露頭數可直接預測隧道湧水量。
三維當量破裂岩體模式模擬之結果顯示,非反應性粒子最大與最小平均移動距離可以達12倍之多,為破裂面叢集異質性所導致,將造成預測非反應性粒子的傳輸行為可能產生很大的誤差。破裂面密度及複雜的交叉結構,加上原生粒子本身衰變行為,對衰變粒子傳輸產生很大的影響,導致衰變粒子的傳輸行為不易預測。在較低破裂面密度情況時,對地下水流動和傳輸影響較不明顯,此結果同時也顯示於某些破裂面密度高但連接性較低之特定岩體,也代表著本研究將可具體描述特定區域之幾何連接特徵。

The purpose of this research is using two-dimensional fracture network model and three-dimensional equivalent fractured-rock model to investigate the behavior of groundwater flow and solute transport. The first part, two-dimensional random discrete fracture program TUNFLOW is used to obtain the stochastic simulation. The statistical results and analysis can find the relationship between the outcrops and seepages. Estimation of tunnel seepage from numbers of outcrops is feasible, and the real data of Syueshan tunnel is used to validate. The second part, concept of permeability tensor is based to build up a three-dimensional equivalent fractured-rock model, and apply the Lan-Yu Island data to explore.
Two-dimensional random discrete fracture simulation results show that groundwater flow through the fracture network will be easier through the link fracture to form the hydraulic path. Fracture network is constructed with the valid and invalid hydraulic fractures. Fracture density and length are the most important factors to determine the numbers of effective outcrops. The tunnel seepage can be directly predicted by means of a number of effective outcrops.
Three-dimensional equivalent fractured-rock model simulation results show that the maximum and minimum moving average distance of non-reactive particles can be up to 12 times, the reason is fracture cluster heterogeneity, it will cause the transmission behavior of the prediction of non-reactive particles may have large errors. Fracture density, complexity of cross-structure, and the original particle decay behavior, have a huge impact on the transmission of decay particle, resulting in the transmission behavior of the decay particle is difficult to predict. In situation of the lower fracture density, the influence of groundwater flow and transport is less obvious, this result also shows in some specific rock of the fracture density is high but the connection is less, but also on behalf of this study will be able to describe specific geometric connection characteristics of a particular area.

中文摘要 III
英文摘要 IV
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
符號表 XIV
第一章 緒論 1
1-1研究動機與目的 1
1-2研究方法與流程 2
第二章 文獻回顧 5
2-1前言 5
2-2破裂面參數 5
2-3破裂岩體水力模型 7
2-3-1離散模式 10
2-3-2 連續模式 13
2-3-3當量模式 20
第三章 利用二維離散模式由露頭數目推估隧道之湧水量 23
3-1離散破裂面模式 23
3-1-1破裂面參數 24
3-1-2破裂面參數性質與分佈型態 24
3-2離散破裂面模式之建立 27
3-2-1機率分佈之產生 28
3-2-2離散破裂面模式建立過程 30
3-3隧道湧水量估計 32
3-4隧道有效露頭與湧水量 33
3-5不同破裂面參數之隧道露頭與湧水量 36
3-5-1痕跡線長度 36
3-5-2破裂面面密度 36
3-5-3破裂面內寬 38
3-5-4地下水位 39
3-6固定露頭與隧道湧水 39
3-7研究區域簡介(雪山隧道) 42
3-7-1雪山隧道簡介 42
3-7-2地質環境簡介 42
3-8條件及設定 45
3-9以隧道有效露頭數估算湧水量 49
3-9-1估算隧道有效露頭數 49
3-9-2估算湧水量 50
第四章 利用三維當量破裂岩體模式探討地下水流及
溶質傳輸行為 52
4-1破裂岩體之透水係數張量 52
4-2三維當量破裂岩體模式建立 56
4-3破裂面參數深入探討 59
4-3-1各組破裂面之平均位態 59
4-3-2破裂面頻率、平均間距和破裂面強度 61
4-3-3破裂面內寬 62
4-3-4建立EBM模型(ENHANCED BEACHER’S MODEL) 64
4-4流動及傳輸模擬 65
4-5案例分析 71
4-5-1地下水流動 71
4-5-2污染物傳輸 72
第五章 結論與建議 79
5-1 結論 79
5-2 建議 80
參考文獻 81
簡歷 92

1.Abelin, H., Neretnieks, I., Tunbrant, S., and Moreno, L., “Migration in a Single Fracture: Experiment Results and Evaluation, Final Report, Stripa Project, Tech. Rep. 55-03 Swed. Nucl. Ful. and Waste Manage Co. (SKB) Stochholm. (1985).
2.Andersson, J., and Dverstorp, B., “Conditional Simulations of Fluid Flow in Three-Dimensional Network of Discrete Fractures, Water Resources Research, Vol. 23, No. 10, pp. 1876-1886 (1987).
3.Andersson, J., Shapiro, A.M., and Bear, J., “A Stochastic Model of a Fracture Rock Conditioned by Measured Information, Water Resources Research, Vol. 20, No. 1, pp. 79-88 (1984).
4.Andersson, J., and Thunvik, R., “Predicting Mass Transport in Discrete Fracture Networks with the Aid of Geometrical Field Data, Water Resources Research, Vol. 22, No. 13, pp. 1941-1950 (1986).
5.Ando, K., Kostner, A., Neuman, S.P., Stochastic Continuum Modeling of Flow and Transport in a Crystalline Rock Mass: Fanay-Augeres, France, Revisited., Hydrogeology Journal, Vol. 11, No. 5, pp. 521-535 (2003).
6.Bandis, S.C., Lumsden, A.C., and Barton, N.R., “Fundamental of Rock Joint Deformation, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 20, pp. 249-268 (1983).
7.Bandis, S.C., Barton, N.R., and Christianson, M., “Application of Joint Behavior to Rock Mechanics Problems, Proc. Int. Symp. on Fundamentals of Rock Joints, Bjorliden. (1985).
8.Barenblat, G.E., Zheltov, I.P., and Kochina, I.N., “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks, Journal of Applied Mathematic and Mechanics, Vol. 24, No. 5, pp. 1286-1303 (1960).
9.Barton, N., Bandis, S., and Bakhtar, K., “Strength, Deformation and Conductivity Coupling of Rock Joints, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 22, pp. 121-140 (1985).
10.Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York (1972).
11.Bernabe Y., Bruderer-Weng C., Maineult A., “Permeability Fluctuations in Heterogeneous Networks with Different Dimensionality and Topology“, Journal of Geophysical Research-Solid Earth, Vol. 108, No. B7, Art. No. 2351 (2003).
12.Bibby, R., “Mass Transport of Solutes in Dual-Porosity Media, Water Resources Research, Vol. 17, pp. 1071-1075 (1981).
13.Botros, F.E., Hassan, A.E., Reeves, D.M., and Pohll, G., “On Mapping Fracture Networks onto Continuum, Water Resources Research, Vol. 44, W08435, 17 pp., doi:10.1029/ 2007WR006092 (2008).
14.Brace W.F., “Permeability of Argillaceous and Crystalline Rocks, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 17, pp. 241-251 (1980).
15.Cacas, M.C., Ledoux, E., de Maesily, G., Tillie, B., Barbreau, A., Durand , E., Feuga, B., and Peaudecerf, P., “Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation 1, Water Resources Research, Vol. 26, No. 3, pp. 479-489 (1990a).
16.Cacas, M.C., Ledoux, E., de Maesily, G., Tillie, B., Barbreau, A., Calmels, P., Gaillard, B., and Margritta, R., “Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation 2, Water Resources Research, Vol. 26, No. 3, pp. 491-450 (1990b).
17.Caldwell, J.A., “In Proceeding of Symposium on Percolation through Fissured Rocks, International Society for Rock Mechanics and International Association of Engineering Geology, Stuttgart, Germany, pp. 115 (1972).
18.Chen, R.H., Lee, C.H., and Chen G.S., “Evaluation of Transport of Radioactive Contaminant in Fractured Rock. Environmental Geology, Vol. 41, pp. 440-450 (2001).
19.Deng, H., Dai, Z., Wolfsberg, A., Lu, Z., Ye, M., and Reimus, P., “Upscaling of Reactive Mass Transport in Fractured Rocks with Multimodal Reactive Mineral Facies, Water Resources Research, Vol. 46, W06501, doi:10.1029/2009WR008363 (2010).
20.Dershowitz, W.S., “Rock Joint System, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1984).
21.Dershowitz, W.S., and Einstein, H.H., “Characterizing Rock Joint Geometry with Joint System Models 1, Rock Mech. and Rock Eng., Vol. 21, pp. 21-51 (1988).
22.Dershowitz, W.S., and Fidelibus, C., “Derivation of Equivalent Pipe Network Analogues for Three-Dimensional Discrete Fracture Networks by The Boundary Element Method, Water Resources Research, Vol. 35, No. 9, pp. 2685-2691 (1999).
23.Dershowitz, W.S., Lee, G., Geler, J., Foxford, T., La, Pointe and Thomas, P., “A FracMan: Interactive Discrete Feature Data Analysis, Geometric Modeling, and Exploration Simulation, Version 2.6. User Documentation, Golder’s Associates, Seattle, Washington. (1998).
24.Dershowitz, W.S., Lee, G., and Foxford, T., “FracWorks XP Discrete Fracture Modeling Software, User Documentation, WA, Golder. (2004).
25.Dershowitz, W.S., and Miller, I., “Dual Porosity Fracture Flow and Transport, Geophysical Research Letters , Vol. 22, No. 11, pp. 1441-1444 (1995).
26.Donald, M.R., Benson, D.A., and Meerschaert, M.M., “Transport of Conservative Solutes in Simulated Fracture Networks: 1. Synthetic Data Generation, Water Resources Research, Vol. 44, W05404, doi:10.1029/2007WR006069 (2008a).
27.Donald, M.R., Benson, D.A., and Meerschaert, M.M., “Transport of Conservative Solutes in Simulated Fracture Networks: 2. Ensemble Solute Transport and the Correspondence to Operator-Stable Limit Distributions, Water Resources Research, Vol. 44, W05410, doi:10.1029/2007WR006858 (2008b).
28.Dreuzy, J.R., Davy, P., and Bour, O., “Hydraulic Properties of Two Dimensional Random Fracture Networks Following a Power Law Distribution 1. Effective Connectivity, Water Resources Research, Vol. 37, No. 8, pp. 2065-2078 (2001).
29.Dverstorp, B., and Andersson, J., “Application of the Discrete Fracture Network Concept with Field Data:Possibilities of Model Calibration and Validation, Water Resources Research, Vol. 25, No. 3, pp. 540-550 (1989).
30.Frampton, A., and Cvetkovic, V., Significance of Injection Modes and Heterogeneity on Spatial and Temporal Dispersion of Advecting Particles in Two-Dimensional Discrete Fracture Networks, Advances in Water Resources, Vol. 32, pp. 649-658 (2009).
31.Goodman, R.E., “Methods of Geological Engineering in Discontinuous Rock, West, St. Paul, MN, pp. 58-90 (1976).
32.Granet, S., Fabrie, P., Lemonnier, P., and Quintard, M., “A Two-Phase Flow Simulation of a Fractured Reservoir Using a New Fissure Element Method, J. Petro. Sci. Eng., Vol. 32, pp. 35-52 (2001).
33.Hsieh, P.A., Neuman, S.P., Stiles, G.K., Simpon, E.S., “Field Determination of the Three-Dimensional Hydraulic Conductivity Tensor of Anisotropic Media, 2, Methodology and Application to Fractured Rocks, Water Resources Research, Vol. 21, pp. 1667-1676 (1985).
34.Karzulovic, A., Goodman, R.E., “Determination of Principal Joint Frequencies, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 22, pp. 471–473 (1985).
35.Kfoury, M., Ababou, R., Noetinger, B., and Quintard, M., “Matrix-Fracture Exchange in a Fractured Porous Medium: Stochastic Upscaling, Comptes Rendus Mecanique, Vol. 332, pp. 679-686 (2004).
36.Khaleel, R., “Scale Dependence of Continuum Models for Fractured Basalts, Water Resource. Research, Vol. 25, No. 8, pp. 1241-1252 (1984).
37.Khamforoush, M., and Shams, K., “Percolation Thresholds of a Group of Anisotropic Three-Dimensional Fracture Networks, Physical A: Statistical Mechanics and its Applications, Vol. 385, pp. 407-420 (2007).
38.Larocque, M., Banton, O., Ackerer, P., and Razack, M., “Determining Karst Transmissivities with Inverse Modeling and an Equivalent Porous Media, Ground Water, Vol. 37, Issue 6, pp. 897-903 (1999).
39.Law, A.M., and Kelton, W.D., “Simulation Modeling and Analysis, McGraw-Hill International Edistionsm, New-York, U.S.A., pp. 420-492 (1991).
40.Le Borgne, T.L., Bour, O., Riley, M.S., Gouze, P., Pezard, P.A., Belghoul, A., Lods, G., Le Provost, R., Greswell, R.B., Ellis, P.A., Isakov, E., and Last, B.J., “Comparison of Alternative Methodologies for Identifying and Characterizing Preferential Flow Paths in Heterogeneous Aquifers. Journal of Hydrology, Vol. 345, pp. 134-148 (2007).
41.Lee, C.C., Tseng, T.F., Chang, F.L., Chuang, W.S., Yeh, H.F. and Lee, C.H., “Evaluation of the Flow and Transport of Granite Using a 3-D Discrete Fracture Network Model, E.A.F.O.R.M., Tokyo (2008).
42.Lee, C.H., Chang, J.L. and Deng, B.W., “A Continuum Approach for Estimating Permeability in Naturally Fractured Rocks, Engineering Geology, Vol. 39, No. 1, pp. 71-85 (1995).
43.Lee, C.H., Chang, J.L., Hsu, K.T., “Investigation of Hydraulic Aperture at Surface-Exposed Rock Fractures in Situ, Geotechnique, Vol. 46, pp. 343-349 (1996).
44.Lee, C.H., Lee, C.C. and Lin, B.S., “The Estimation of Dispersion Behavior in Discrete Fractured Networks of Andesite in Lan-Yu Island, Taiwan, Environ. Geo., Vol. 52, No. 7, pp. 1297-1306 (2007).
45.Lee, C.C., Tseng, T.F., Chang, F.L., Chuang, W.S., Yeh, H.F. and Lee, C.H., “Evaluation of the flow and transport of granite using a 3-D discrete fracture network model, E.A.F.O.R.M., Tokyo (2008).
46.Lin, B.S., and Lee, C.H., “Percolation and Dispersion of Mass Transport in Saturated Fracture Network, Water Resource Management, Vol. 12, pp. 409-432 (1998).
47.Lin, B.S., Lee, C.H., and Hwang, H.H., “Analysis of Mass Transport Through Fractured Networks Using Percolation Theory Approach, Journal of The Chinese Institute of Environment Engineers, Vol. 7, No. 1, pp. 1-11 (1997).
48.Lin, B.S., Lee, C.H., and Yu, J.L., “Analysis of Groundwater Seepage of Tunnels in Fracture Rock, Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160 (2000).
49.Lin, H.I, and Lee, C.H., “An Approach to Assessing the Hydraulic Conductivity Disturbance in Fractured Rocks around the Syueshan Tunnel, Taiwan, Tunneling and underground space technology, Vol. 24, No. 2, pp. 222-230 (2009).
50.Long, J.C.S., Remer, C.R., Wilsion, C.R., and Witherspoon, P.A., “Porous Media Equivalents for Networks of Discontinuous Fractures, Water Resources Research, Vol. 18, No. 3, pp. 645-648 (1982).
51.Long, J.C.S., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability in Fracture Networks, Journal of Geophysical Research, Vol. 90, No. B4, pp. 3087-3098 (1985).
52.Martinez-Landa L., Carrera J., “An Analysis of Hydraulic Conductivity Scale Effects in Granite (Full-Scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland), Water Resources Research, Vol. 41, W03006, 13 pp., (2005).
53.Maryška, J., Severýn, O., and Vohralík, M., “Numerical Simulation of Fracture Flow with a Mixed-Hybrid FEM Stochastic Discrete Fracture Network Model, Computational Geosciences, Vol. 8, pp. 217-234 (2004).
54.McLaren, R.G., Forsyth, P.A., Sudicky, E.A., Vander Kwaak, J.E., Schwartz, F.W., and Kessler, J.H., “Flow and Transport in Fractured Tuff at Yucca Mountain: Numerical Experiments on Fast Preferential Flow Mechanisms, Journal of Contaminant Hydrology, Vol. 43, pp. 211-38 (2000).
55.Miller, S.M., A Statistical Method to Evaluate Homogeneity of Structural Populations, Mathematical Geology, Vol. 15, pp. 317-328 (1983).
56.Moench, Allen F., “Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture Skin“, Water Resources Research, Vol. 20, No. 7, pp. 831-846 (1984).
57.Neuman, S.P., Stochastic Continuum Representation of Fractured Network Concept “, Proc. 28th Symp. On Rock Mechanics, University Arizona, Tucson, (1987).
58.Nguyen, T.S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y., Tanaka, M., and Jing L., “Hydro-Mechanical Response of A Fractured Granitic Rock Mass to Excavation of A Test Pit-The Kamaishi Mine Experiment in Japan, International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp. 79-94 (2001).
59.Novakowski, K.S., Evans, G.V., Lever, D.A. and Raven, K.G., “A Field Example of Measuring Hydrodynamic Dispersion in a Single Fracture, Water Resources Research, Vol. 21, pp. 1165-1174 (1985).
60.Oda, M., “Permeability Tensor for Discontinuous Rock Masses, Geotech, Vol. 35, pp. 483-495 (1985).
61.Oda, M., “An Equivalent Continuum Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses, Water Resources Research, Vol. 22, No. 13, pp. 1845-1856 (1986).
62.Pahl, P.J., “Estimation The Mean Length of Discontinuity Traces, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp. 221-228 (1981).
63.Pan, J.B., Lee, C.C., Lee, C.H., Yeh, H.F., and Lin, H.I., “Application of Fracture Network Model with Crack Permeability Tensor on Flow and Transport in Fractured Rock, Engineering Geology, Vol. 116, pp. 166-177 (2010).
64.Park, Y.J., Dreuzy, J.R., and Lee, K.K., “Transport And Intersection Mixing in Random Fracture Networks with Power Length Distribution, Water Resources Research, Vol. 37, No. 10, pp. 2493-2501 (2001).
65.Parsons, R.W., “Permeability of Idealized Fractured Rock, Society of Petroleum Engineering Journal, Vol. 6, pp. 126-136 (1966).
66.Piggott, A.R., and Elsworth, D., “Physical and Numerical Studies of a Fractured System Model, Water Resources Research, Vol. 25, pp. 457-462 (1989).
67.Priest, S.D., “Discontinuity Analysis for Rock Engineering, Chapman & Hall. (1993).
68.Priest, S.D., Hudson, J.A., “Estimation of Discontinuity Space and Trace Length Using Scanline Survey, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp. 183-197 (1981).
69.Priest, S.D., and Samaniego, A., “A Model for the Analysis of Discontinuity Characteristic in Two Dimension, Proc. 5th Cong. ISRM, Melbourn, pp. 199-207 (1983).
70.Renshaw, C.E., “Influence of Subcritical Fracture Growth on the Connectivity of Fracture Networks, Water Resources Research, Vol. 32, No. 6, pp. 1519-1530 (1996).
71.Rocha, M., and Franciss, F., “Determination of Permeability in Anisotropic Rock Masses from Integral Samples, Rock Mechanics and Rock Engineering, Vol. 9, pp. 67-93 (1977).
72.Roubinet, D., De Dreuzy, J.-R., and Davy, P., “Connectivity-Consistent Mapping Method for 2-D Discrete Fracture Networks, Water Resources Research, Vol. 46, W07532, doi:10.1029/2009WR008302 (2010).
73.Romm, E.S., Fluid Flow in Fractured Rocks, Nedra Publishing (1966).
74.Rouleau, A., and Gale, J.E., “Stochastic Discrete Fracture Simulation of Groundwater Flow into an Underground Excavation in Granite, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 24, No. 2, pp. 99-112 (1987).
75.Rowe, R.K., and Booker, J.R., “A Semi-Analytical Model for Contaminant Migratoin in a Regular Two- or Three-Dimensional Fractured Network:Conservative Contaminants, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 13, pp. 531-550 (1989).
76.Rowe, R.K., and Booker, J.R., “A Semi-Analytical Model for Contaminant Migratoin in a Regular Two- or Three-Dimensional Fractured Network:Reactive Contaminants, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, pp. 401-425 (1990).
77.Samardzioska, T., and Popov, V., “Numerical Comparison of the Equivalent Continuum, non-Homogeneous and Dual Porosity Models for Flow and Transport in Fractured Porous Media, Advances in Water Resources, Vol. 28, pp. 235-255 (2005).
78.Sawada, A., Uchida, M., Shimo, M., Yamamoto, H., Takahara, H., and Doe, T.W., “Non-sorbing Tracer Migration Experiments in Fractured Rock at The Kamaishi Mine, Northeast Japan, Eng. Geology, Vol. 56, pp. 75-96 (2000).
79.Scanlon, B.R., Mace, R.E., Barrett, M.E., and Smith, B., “Can we Simulate Regional Groundwater Flow in a Karst System Using Equivalent Porous Media Models? Case Study, Barton Springs Edwards Aquifer, USA, Journal of Hydrology, Vol. 273, pp. 137-158 (2003).
80.Schwartz, F.W., Smith, L., and Crowe, A.S., “A Stochastic Analysis of Macroscopic Dispersion in Fracture Media, Water Resources Research, Vol. 19, No. 5, pp. 1253-1265 (1983).
81.Schwartz, F.W., and Smith, L., “A Continuum Approach for Modeling Mass Transport in Fractured Media, Water Resources Research, Vol. 19, No. 4, pp. 959-969 (1988).
82.Shanley, R.J., Mahtab, M.A.,Delineation and Analysis of Clusters in Orientation Data, Mathematics Geology, Vol. 8, pp. 9-13 (1976).
83.Smith, L., and Schwartz, F.W., “A Analysis of Influence of Fracture Geometry on Mass Transport in Fracture Media, Water Resources Research, Vol. 20, No. 9, pp. 1241-1252 (1984).
84.Snow, D.T., “A Parallel Plate Model of Fractured Permeable Media Ph.D. Dissertation“, University of California, Berkeley (1965).
85.Snow, D.T., “Rock Fracture Spacings, Openings and Porosities, Journal of Soil Mechanics & Foundations Div.,Vol. 94, No. SM 1, pp. 73-91 (1968).
86.Snow, D.T., “Anisotropic Permeability of Fractured Media, Water Resources Research, Vol. 5, No. 6, pp. 1273-1289 (1969).
87.Snow, D.T., “The Frequency and Apertures of Fractures in Rock, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 7, pp. 23-40 (1970).
88.Sudicky, E.A., “The Laplace Transform Galerkin Technique for Efficient Time- Continuous Solution of Solute Transport in Double-Porosity Media, Geoderma, Vol. 46, pp. 209-232 (1990).
89.Tsang, Y.W., “Usage of “Equivalent Aperture for Rock Fractures as Derived from Hydraulic and Tracer Tests, Water Resources Research, Vol. 28, pp. 145-155 (1992).
90.Vilks, P., and Baik, M.H., “Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture, “ Journal of Contaminant Hydrology, Vol. 47, pp. 197-210 (2001).
91.Wang, J.S.Y., Trautz, R.C., Cook, P.J., Finsterle, S., James, A.L., and Birkholzer, J., “Field Tests and Model Analyses of Seepage into Drifts, Journal of Contaminant Hydrology, Vol. 38, pp. 323-347 (1999).
92.Warren, J.E., and Root, P.J., “The Behavior of Naturally Fractured Reservoirs, Society of Petroleum Engineers, Vol. 3, No. 3, pp. 245-255 (1963).
93.Wei Z.Q., Egger P., and Descoeudres F., “Permeability Predictions for Jointed Rocked Masses, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 32, No. 3, pp. 251-261 (1995).
94.Weiss, L.E., “The Minor Structures of Deformed Rock, Springer-Verlag, N.Y. (1972).
95.Wilson, C.R., and Witherspoon, P.A., “Flow Interference Effects at Fracture Intersections, Water Resources Research, Vol. 12, No. 1, pp. 102-104 (1976).
96.Witherspoon, P.A., Wang, J.C.Y., Iwall, K., and Gale, J.E., “Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Water Resources Research, Vol. 16, No. 6, pp. 1016-1024 (1980).
97.Zhang, X., and Sanderson, D.J., “Numerical Modelling of the Effects of Fault Slip on Fluid Flow around Extensional Faults“, Journal of Structural Geology, Vol. 18, pp. 108-119 (1996).
98.Zimmerman, R.W., Chen, G., Hadgu, T., and Bodvarsson, G.S., “A Numerical Dual-porosity Model with Semi-analytical Treatment of Fracture Matrix Flow, Water Resources Research, Vol. 29, No. 7, pp. 2127-2137 (1993).
99.Zyvoloski, G.A., Robinson, B.A., Viswanathan, H.S., “Generalized Dual Porosity: a Numerical Method for Representing Spatially Variable Sub-Grid Scale Processes, Advances in Water Resources, Vol. 31, pp. 535-544 (2008).
100.臺灣電力公司核能廢料管理處委託原子能委員會核能廢料管理處,「我國用過核燃料長程處置計劃」,蘭嶼地質調查報告書(1991)。
101.古元豐、李宏徹,「北宜高坪林隧道導坑里程39k+079tTBM停機處理之地質判釋」,岩盤工程研討會論文集,臺灣,臺北,第221-230頁(1996)。
102.交通部臺灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段坪林隧道段地質調查工作期末報告」,財團法人中興顧問工程社 (1990)。
103.交通部臺灣區國道新建工程局,「北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作第一年度成果報告」,中興工程顧問股份有限公司 (1998)。
104.余進利,「破裂面網路地下水流與污染物傳輸之研究」,博士論文,國立成功大學水利及海洋工程學系,臺南(1992)。
105.李振誥、余進利,「節理與流動模型」,地工技術雜誌,第33期,第68-82頁 (1991)。
106.李振誥、李森吉、張瑞麟、陳時祖,「估計岩體中不連續面組數,及各組之平均位態與頻率之探討」,地工技術雜誌,第39期,第64-76頁 (1992)。
107.李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,第99-126頁 (2000)。
108.李振誥、陳榮華、林碧山,「正交破裂面傳輸模式運用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究」,中國環境工程學刊,第5卷,第2期,第149-160頁(1995)。
109.李禎常,「破裂岩體地下水流與污染物平均傳輸統計分佈性質之研究」,碩士論文,國立成功大學資源工程學系,臺南 (2003)。
110.李禎常,「複合破裂岩體地下水流與污染物傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南 (2011)。
111.林宏奕,「破裂岩體優勢水流路徑之研究」,博士論文,國立成功大學資源工程研究所,臺南 (2009)。
112.林宏奕、李振誥,「破裂岩體隧道開挖對滲透係數之影響-以雪山隧道為例」,中國礦冶工程學會會刊,第47卷,第2期,第110-122頁 (2003)。
113.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第14卷,第3期,第429-439頁(2002)。
114.吳育生,「破碎岩體中破裂面特性及透水係數張量之研究」,碩士論文,國立成功大學礦冶及材料科學研究所,臺南 (1993)。
115.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程研究所,臺南 (2000)。
116.洪如江,「工程地質在隧道工程之應用」,地工技術雜誌,第11期,第67-75頁 (1985)。
117.洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,國立成功大學資源工程研究所,臺南 (1999)。
118.翁淑涵,「隧道破裂面露頭與湧水量關係之研究」,碩士論文,國立成功大學資源工程學系,臺南 (2007)。
119.黃崇琅、李振誥,「應用雙孔隙模式於具膚表效應破裂含水層水力性質估計之研究」,第七屆大地工程學術研究討論會論文集,臺北,第 1113-1120頁 (1997) 。
120.陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立臺灣大學地質所,臺北 (1997)。
121.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南 (2001)。
122.許廣宗,「地表補注對破裂岩體入滲行為之研究—應用蘭嶼地區安山岩體」,碩士論文,國立成功大學資源工程研究所,臺南 (1996)。
123.曾景琮、朱正玨,「坪林隧道東行線TBM穿越金盈斷層施工」,第七屆大地工程學術研究討論會論文集,臺灣,臺北,第1283-1290頁 (1997)。
124.蔡明謙、李振誥,「採樣規模中痕跡線長度與其出現頻率之估計」,岩盤工程研討會,中壢,第31-40頁 (1994)。
125.謝敬義,「隧道工程與地質」,地工技術雜誌,第28期,第5-24頁 (1989)。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top