跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂秉軍
研究生(外文):Bing-JyunLyu
論文名稱:離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響
論文名稱(外文):Effect of diffusion on the cofiring behavior of LTCC and NiCuZn ferrites.
指導教授:向性一
指導教授(外文):Hsing-I Hsiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:133
中文關鍵詞:鎳銅鋅鐵氧磁體硼鋁矽玻璃陶瓷疊層共燒銀析出
外文關鍵詞:LTCCNiCuZn ferritescofiringprecipitation of Ag
相關次數:
  • 被引用被引用:11
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含鉍之鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷疊層共燒時,其界面處會有大量微孔洞產生,電子探針之成份分佈顯示為大量的鉍元素富集於界面處。藉著穿透式電子顯微鏡分析可得知氧化鉍會固溶至硼鋁矽酸玻璃中,生成新玻璃系統之鉍硼鋁矽玻璃相,並改變原本硼鋁矽酸玻璃之熱收縮曲線,造成鐵氧磁體與玻璃陶瓷之燒結曲線不匹配,因此硼鋁矽玻璃無法與含鉍的鎳銅鋅鐵氧磁體共燒。當採用無鉍之鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷疊層共燒時,為降低燒結溫度必須提高其銅含量,但較高的銅含量會促使銅擴散至玻璃中,導致在降溫階段擴散至界面的銅於大氣氣氛下會促使銀聚集於界面上並析出至表面。
In this study, interfacial interaction between low dielectric constant LTCC material and NiCuZn ferrites at 900oC were studied using XRD, DIL, SEM, EPMA and TEM. Delamination occurred at the interface between LTCC and NiCuZn ferrites added with Bi2O3. It may be due to the Bi enriched at the interface and diffused into LTCC, which shifted the densification curve of LTCC towards low temperature, and hence resulted in the shrinkage mismatch between LTCC and NiCuZn ferrites. During cofiring the LTCC and NiCuZn ferrites without the addition of Bi2O3, the Cu in NiCuZn ferrites segregated into the interface between NiCuZn ferrites and LTCC interface and then dissolve into borosilicate glass and diffuse toward free surface and transform into Cu2+ ions due to the higher oxygen partial pressure near the surface. This will lead to Ag+ ions dissolved in LTCC diffused toward free surface and precipitated as metal Ag by obtaining electrons released from the transformation of Cu+ into Cu2+ near the surface.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機及目的 1
第二章 前人研究及理論基礎 3
2-1 積層電感 3
2-1-1電感之特性[1] 3
2-1-2積層電感之構造 3
2-1-3寄生電容 6
2-1-4電感之自我共振頻率 7
2-1-5電感之品質因子 7
2-1-6電感之感抗 8
2-1-7直流疊加特性 9
2-1-8積層電感之製程[1] 11
2-2 鎳銅鋅鐵氧磁體材料 14
2-2-1尖晶石鐵氧磁體結構 14
2-2-2鋅鐵氧磁體 17
2-2-3 NiCuZn鐵氧磁體之成分比例影響特性[14] 20
2-2-4 添加劑降低NiCuZn鐵氧磁體之燒結溫度 24
2-3 低溫共燒陶瓷[24、25] 27
2-3-1介電常數 29
2-3-2低介電常數材料 30
2-4玻璃陶瓷系統[25] 35
2-4-1玻璃+陶瓷系統 35
2-4-2玻璃-陶瓷系統 39
2-4-2-1 MgO-Al2O3-SiO2系統 39
2-4-2-2 CaO-Al2O3-SiO2系統 40
2-4-2-3 CaO-B2O3-SiO2系統 40
2-5應用於LTCC之電極材料 41
2-6 多層共燒行為與缺陷 42
2-7界面反應 44
2-7-1玻璃陶瓷系統與銀電極共燒 44
2-7-2銀離子於LTCC中擴散情形 45
2-7-3鐵氧磁體與銀電極及玻璃陶瓷系統共燒 48
2-8銅玻璃 53
2-9 ELLINGHAM DIAGRAM 57
2-10 氧化還原[59] 57
第三章 實驗方法及步驟 60
3-1 起始原料來源 60
3-2 起始原料分析 60
3-3 生胚製備方式 61
3-4 實驗製程步驟 61
3-4-1硼鋁矽玻璃陶瓷基板與鎳銅鋅鐵磁性層之共燒匹配性 61
3-4-2鉍擴散至玻璃中對玻璃陶瓷基板之影響 63
3-4-3內電極銀元素與鎳銅鋅鐵氧磁體之銅元素擴散對硼鋁矽玻璃陶瓷基板之影響 64
3-4-4燒結氣氛處理 65
3-5 材料特性分析 68
3-5-1 結晶相鑑定分析(XRD) 68
3-5-2 燒結熱收縮膨脹曲線分析(DIL) 68
3-5-3 密度及莫耳體積之量測(阿基米德) 69
3-5-5 微結構觀察 69
3-5-4-1 OM觀測 69
3-5-4-2 SEM觀測 69
3-5-4-3 EPMA觀測 70
3-5-4-4 TEM觀測 70
3-5-4-5 元素價數量測 70
第四章 結果與討論 71
4-1 硼鋁矽玻璃陶瓷與鎳銅鋅鐵氧磁體之共燒匹配性 71
4-1-1 熱縮收曲線分析 71
4-1-1-1 不同NiCuZn鐵氧磁體與BSA熱縮收曲線分析 71
4-1-1-2 添加劑對熱收縮曲線之影響 71
4-1-2 FBS2與BSAF10共燒分析 77
4-1-2-1熱收縮曲線分析 77
4-1-2-2結晶相分析 77
4-1-3 顯微結構分析 79
4-2 鉍擴散至玻璃中對玻璃陶瓷基板之影響 92
4-2-1 結晶相分析 92
4-2-2 顯微結構分析 92
4-2-3 熱收縮行為 93
4-2-4 阿基米德法密度測量 93
4-3鎳銅鋅鐵氧磁體之銅擴散至硼鋁矽玻璃陶瓷中對銀析出之影響 101
4-3-1 銀擴散及析出現象 101
4-3-2 銅擴散現象及銅玻璃效應 106
4-3-3 銅及銀離子於硼鋁矽玻璃陶瓷系統中擴散和析出的機制 115
4-4 燒結氣氛處理 122
第五章 結論 129
第六章 參考文獻 130
[1]柯文雄,晶片型電子陶瓷材料及元件技術,工業技術研究院,1993
[2]TDK,SMD Pulse Transformer for Ethernet Applications ALT4532 Series,Tech Journal,2011
[3]TDK,Multilayer Chip Inductor MLG0402Q/MLG0603P,Tech Journal,2011
[4]Toko,Laminated inductor,Japanese Application Publication No. JP 02-165607,1990
[5]M. D. Kingery, H. K. Bowen , D.R. Uhlmann, “Introduction to ceramics, 2nd Edition, John Wiley & Sons, New York (1976).
[6]金重勳,磁性技術手冊,中華民國磁性技術協會,2002
[7]山口橋、柳田博明、岡本祥一、近桂一郎、黃忠良,磁性陶瓷,復漢出版社,2001
[8]劉向春,ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究,西北工業大學,博士論文,2006
[9]Alex Goldman, Modern ferrite technology, Spring, NY (2006)
[10]Raul Valenzuela, Magnetic ceramics, Cambridge University Press, NY (1994)
[11]C. Guillaund, J. Phys. Rad., 12 239 (1951).
[12]陳皇均,陶瓷材料概論下,曉園出版社,1992
[13]張雲峰,高磁導率NiCuZn鐵氧磁體材料研究,電子科技大學,碩士論文
[14]劉向春,ZnO-TiO2系介電陶瓷/NiZnCu鐵氧磁體疊層低溫共燒兼容特性研究,西北大學,博士論文,2006
[15]J. H. Nam, H. H. Jung, J. Y. Shin, et al, “The effect of Cu substitution on the electrical and magnetic properties of NiZn ferries,IEEE. Trans. Magn., 31 [6] 3985-3987 (1995).
[16]J. Murbe, J. Topfer, “Ni-Cu-Zn Ferrites for low temperature firing Effects of powder morphology and Bi2O3 addition on microstructure and permeability,J. Electro., 16 [3] 199-205 (2006).
[17]呂承翰,鐵氧磁體與低溫共燒陶瓷之燒結性質,台灣大學材料與工程學系研究所,碩士論文,2008
[18]J. H. Jean and C. H. Lee, “Low-fire NiO-CuO-ZnO Ferrite with Bi2O3, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 38 [6A] 3508-3512 (1999).
[19]K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive, Journal of Physics D-Applied Physics, 41 [23] 235002 (2008).
[20]S. F. Wang, Y. R. Wang, T. C. K. Yang, P. J. Wang and C. A. Lu, “Densification and Properties of Fluxed Sintered NiCuZn Ferrites, Journal of Magnetism and Magnetic Materials, 217[1-3] 35-43 (2000).
[21]J. Y. Hsu, W. S. Ko, H. D. Shen, C. J. Chen, “Low Temperature Fired NiCuZn Ferrite, IEEE Transactions on Magnetics, 30 [6] 4875-4877 (1994).
[22]L. S. Chen, C. S. Hsi, S. L. Fu and J. Y. Lin, Cosintering of Ni-Zn-Cr Ferrite with Low-temperature Cofired Ceramic Substrates, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 39 [1] 50-154 (2000).
[23]李岳翰,銀對鐵氧磁體及低溫陶瓷之共燒行為研究,台灣大學材料與工程學系研究所,碩士論文,2010
[24]王鐘慶,添加氧化鋯(ZrO2)對合成K2O-CaO-MgO-Al2O3-SiO2玻璃陶瓷之結晶行為、介電性質及機械性質之影響,成功大學資源工程研究所,碩士論文,2011
[25]王郁茹,銀電極與玻璃陶瓷之介面反應研究,台灣大學材料與工程學系研究所,碩士論文,2005
[26]R. Eitel, A. Baker, J. Agraz, M. Lanagan, et al , “On-board fiber alignment in LTCC optoelectronic packages, ACerS/IMAPS 1st International Conference and Exhibition on CICMT, 2005.
[27]葉信賢,基層陶瓷可靠度技術,工業材料雜誌,192期,144-152,2002
[28]R.R. Tummala, “Ceramic and glass-ceramic packing in the 1990s, J. Am. Ceram. Soc., 74 895-908 (1991).
[29]T. K. Gupta, J. H. Jean, “Principles of the development of a silica dielectric for microelectronics packaging,J. Mater. Res.,11 [1] 243-263 (1996)
[30]M. T. Sebastian, H. Jantunen, “Low loss dielectric material for LTCC application; a review,Int. Mater. Rev., 53 [2] 57-90 (2008).
[31]V. Swamy, I. H. Jung, and S. A. Decterov,“Thermodynamic modeling of the Al2O3–B2O3–SiO2 system,J. Non-cryst. Solids., 355 [34-36] 1679-1689 (2009).
[32]Y. T. Fei, S. J. Fan, R. Y. Sun, and J. Y. Xu, “Crystallizing behavior of Bi2O3-SiO2 system,J. Mater. Scie., 19 [10] 893-895 (2000).
[33]V. A. Sokolov, M. D. Gasparyan, “Synthesis and properties of fusion-cast refractories in the Al2O3-B2O3 system,Refract. Ind. Ceram., 45 [3] 177-180 (2004).
[34]Cornelis Klein, Cornelius S. Hurlbut, Jr., Manual of Mineral Science, 22nd edition, John Wiley & Sons, Inc., (2002).
[35]M. G. M. U. Ismail, and H. Arai, “Sol-gel synthesis of B2O3-doped anorthite and its characteristics,J. Ceram. Soc. Japan, 100 [12] 1336-1370 (1992).
[36]C. R. Chang and J. H. Jean, “Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics, J. Am. Ceram. Soc., 82 [7] 1725-1732 (1999).
[37]S. H. Wang and H. P. Zhou, “Densification and dielectric properties of CaO-B2O3-SiO2 system glass ceramics, Mater. Sci. Eng., 99 [1] 597-600 (2003).
[38]Metals Handbook, 10thed., Vol. 2, ASM Int., Materials Park, Ohio (1984).
[39]S. F. Wang, and W. Huebner, “Interaction of Ag/Pd metallization with lead and bismuth oxide-based fluxes in multilayer ceramic capacitor,J. Am. Ceram. Soc., 75[9] 2339-2352 (1992).
[40]Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, “Preparation and electromagnetic properties of ferrite–cordierite composites J. Mater. Lett., 44 [5] 279-283 (2000).
[41]T. Cheng, and R. Raj,“Flaw generation during constrained sintering of metal-ceramic and metal-glass multilayer,J. Am. Ceram. Soc., 72 [9] 1649 (1989).
[42]O. Guillon, S. Kraub, J.R. Odel, “Influence of thickness on the constrained sintering of alumina films ,J. Europ. Ceram. Soc., 27 [7] 2623 (2007).
[43]Y. J. Choi, J. H. Park, W. J. Ko, I. S. Hwang, S. Nahm,“Co-firing and shrinkage matching in low- and middle- permittivity dielectric compositions for a low-temperature co-fired ceramics system,J. Am. Ceram. Soc., 89 [2] 562-567 (2006).
[44]J. H. Jean, C. R. Chang, and C. D. Lei, “Sintering of a crystallizable CaO-B2O3-SiO2 glass with silver, J. Am. Ceram. Soc., 87 [7] 1244-1249 (2004).
[45]J. H. Jean and C. R. Chang, “Interfacial reaction kinetics between silver and ceramic-filled glass substrate, J. Am. Ceram. Soc., 87 [7] 1287-1293 (2004).
[46]G. H. Frischat, Ionic diffusion in oxide glasses, Trans Tech Publiction, Ohio (1975).
[47]J. Assal, B. Hallstedt, and L. J. Gauckler, “Thermodynamic assessment of the silver-oxygen system, J. Am. Ceram. Soc., 80[12] 3054-3060 (1997).
[48]Colin J. Smithells and Eric A. Brandes, Metals Reference book, 5thed.,London, Boston, Butterworths (1976).
[49]M. Valant, and D. Suvorov, “Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study,J. Am. Ceram. Soc., 83 [11] 2721-2729 (2000).
[50]A. E. Gheribi, J. Rogez, F. Marinelli, J. C. Mathieu, M. C. Record, “Introduction of pressure in binary phase diagram calculations Application to the Ag-Cu system,Computer Coupling of Phase Diagrams and Thermochemistry, 31 [3] 380-389 (2009).
[51]H. Nishiura, R. O. Suzuki, and K. Ono, “Experimental phase diagram in the Ag-Cu2O-CuO System,J. Am. Soc., 81 [8] 2181-2187 (1998).
[52]K. Kamiya, T. Yoko, S. Sakka, “Migration of Cu+ ions in Cu2O-Al2O3-SiO2 glass on heating air, J. Non-Cryst. solids, 80 [1-3] 405-411 (1986).
[53]S. Sakka, K. Kamiya, K. Kato, “Incorporation of copper into glass by the Cu-Na ion exchange, J. Non-Cryst. solids, 52 [1-3] 77-90 (1982).
[54]S. K. Misra, and A. C. D. Chaklader,“The system copper oxide-alumina,J. Am. Ceram. Soc., 46 [10] 509-509 (1963).
[55]Q. Xiao, H. Ma, and X. Zhao, “Isothermal section of a Cu2O-Al2O3-SiO2 pseudo-ternary system at 1150℃ in air,J. Am. Ceram. Soc., 91 [1] 252-256 (2008).
[56]K. T. Jacob, C. B. Alcock, “Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3,J. Am. Ceram. Soc., 58 [5-6] 192-195 (2006).
[57]M. D. Baldwin, P. R. Chidambaram, and G. R. Edwards, “Spreading and interlayer formation at the copper-copper oxide/polycrystalline alumina interface,Metall. Mater. Trans. A., 25 [11] 2497-2506 (1994).
[58]David R. Gaskell, “Introduction to the Thermodynamics of Materials.Baker & Taylor Books (2008).
[59]H. M. Liao, R. N. S. Sodhi, T. W. Coyle, “Surface composition of AlN powders studied by x‐ray photoelectron spectroscopy and bremsstrahlung‐excited Auger electron spectroscopy,J. Vac. Sci., 11 [5] 2681-2686 (1993).
[60]S. Thomas, S .K. Nair, E. M. A. Jamal, S. H. A. Harthi, M. R. Varma, M. R. Anantharaman, “Size-dependent surface plasmon resonance in siler silica nanocomposites, Nanotechnology, 19 [7] 075710-1-7(2008).
[61]T. Yano, M. Ebizuka, S. Shibata, M. Yamane, “Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses, J. Electron Spectrosc., 131-132 [1] 133-144 (2003).
[62]N. S. Mclntyre, M. G. Cook, “X-ray photoelectron studies on some oxides and hydroxides of cobalt, Nickel, and Copper, Anal. Chem., 47 [13] 2208-2213 (1975).
[63]A. Barba, C. Clausell, J. C. Jarque, M. Monzó, “ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate, J. Europ. Ceram. Soc., 31 [12] 2119-2128 (2011).
[64]M. C. Abramo, G. Pizzimenti, “Size effects of Ag+ ion in the computer simulation of Ag2O−B2O3 glasses,Solid State Ioncis, 28-30 [1] 148-151 (1988).
[65]H. A. Silim, “FTIR Spectroscopy and Structure of the Binary Glass Cu2O – MoO3 System,J. Solids, 28 [1] 15-23 (2005).
[66]J. C. Conesa, J. Soria, “Electron spin resonance of undetected copper (Ⅱ) ions in y zeolite,J. Phys. Chem., 82 [16] 1847-1850 (1978).
[67]K. B. Shim, N. T. Cho, S. W. Lee, “Silver diffusion and microstructure in LTCC multilayer couplers for high frequency,J. Mater. Sci., 35 [4] 813-820 (2000).
[68]J. S. Jeon, M. R. Cha, N. S. Kim, H. S. Kim,“Effect of frit content in Ag paste and thickness of transparent dielectric on yellowing phenomenon,Mater. Sci. Forum, 510 -511 506-509 (2006).
[69]J. H. Jean, C. R. Chang, “Interfacial reaction kinetics between silver and ceramic-filled substrate,J. Am. Ceram. Soc., 87 [7] 1287-1293 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top