跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張澔宇
研究生(外文):Hao-YuChang
論文名稱:不同製備而得之堇青石陶瓷的特性與熱膨脹行為
論文名稱(外文):Characterization and Thermal Expansion Behavior of Cordierite Ceramics Prepared through Different Processes
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:α 相堇青石β 相堇青石熱膨脹係數蜂巢陶管
外文關鍵詞:α-cordieriteβ-cordieritethermal expansioncordierite honeycomb
相關次數:
  • 被引用被引用:0
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用固態反應法將純相氧化物粉末進行煅燒合成出堇青石粉末。二次球磨可以有效去除並破壞煅燒後粉末內的硬質凝聚體,並提高生坯的堆積均勻性,使燒結後的陶瓷體更緻密。二次球磨後的粉進行二次煅燒可以使反應更加完全,並提高堇青石粉末的結晶性。比較各堇青石陶瓷體,可以發現燒結的溫度越高或持溫時間越長,陶瓷體之相對密度會上升。
利用 GSAS 軟體做 Rietveld Method 分析各樣品間 α 相及 β 相堇青石的比例可以發現,若是樣品的分析結果其 α 相的含量較高,其 distortion index 會較低。利用XRD 進行長時間的晶格繞射,比對 GSAS 的結果,再利用Diamond 軟體模擬樣品中 α 相及 β 相堇青石繞射蜂的位置及強度,可以較精確的判斷樣品中 α 相及 β 相堇青石含量的多寡。
堇青石陶瓷體之相對密度越大,孔洞越少,其熱膨脹係數會有上升的趨勢。而若是樣品中 β 相堇青石的含量越高會導致陶瓷體的熱膨脹係數越高。進行二次熱循環觀察陶瓷體的熱膨脹行為可以發現,堇青石陶瓷體不會受到多次熱循環而使得其熱膨脹行為有劇烈的改變。堇青石蜂巢陶管根據不同的方向其熱膨脹係數也會有所差異,因為優選方向的關係,平行擠出成型的方向上之熱膨脹係數會較低。



關鍵詞 : α 相堇青石、β 相堇青石、熱膨脹係數、蜂巢陶管

In this study, the pure phase oxide powder were used to synthetic cordierite powder through solid-state reaction. The calcined powder after second ball mill can effectively remove the hard agglomerates and increase the sintered density. After second calcination, the crystalinity of the cordierite powder was increased and the reaction was more complete. Comparing samples made in this study, we found that the sintered density increased with increasing temperature.
In this study, we used following methods to analyze the phase composition of samples: using GSAS (Rietveld method) to analyze samples' XRD diffraction patterns and compared the difference of the distortion index between samples. By these methods, we found that all analyses drew the same conclusion, and furthermore verified that the phase composition of samples were tended to α or β phase.
The thermal expansion coefficient of samples would increase with higher
relative density and more β-cordierite. The thermal expansion behavior of cordierite ceramic samples were not affected with two thermal cycling. However, with the grain size increased, the area of hysteresis loop increased.
The thermal expansion coefficient in axial direction was lower than radial direction of the extruded cordierite honeycomb, which was resulted from preferred orientation.

Keywords: α-cordierite, β-cordierite, thermal expansion, cordierite honeycomb

中文摘要 I
Abstract II
誌謝 III
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 理論基礎與文獻回顧 3
2-1 堇青石的晶體結構及特性 3
2-1-1堇青石晶體結構隨著溫度改變 3
2-2堇青石晶體的熱膨脹行為 8
2-3 堇青石陶瓷體的熱膨脹行為 14
2-3-1 微結構的探討 14
2-3-2 優選方向討論 16
2-3-3 I-ratio探討 20
2-4 改變熱膨脹行為的因素 23
2-5 α 與 β 相堇青石的探討 28
第三章 實驗方法及步驟 30
3-1 實驗概念 30
3-2 起始原料 30
3-3 實驗流程 30
3-3-1 堇青石粉末的製備 32
3-3-2 堇青石陶瓷體的燒結製備 32
3-4 材料分析 33
3-4-1 粉末之熱差 / 熱重分析 33
3-4-2 X 光粉末繞射分析 33
3-4-3 掃描式電子顯微鏡 35
3-4-4 陶瓷體之密度量測 35
3-4-5 晶體結構分析 36
3-4-6 熱膨脹行為分析 39
第四章 結果與討論 40
4-1 粉末合成分析 40
4-1-1 起始粉之熱差 / 熱重分析 40
4-1-2 微結構分析 40
4-1-3 結晶相分析 41
4-2 二次球磨對粉末及燒結行為的影響 43
4-3 二次煅燒對粉末及燒結行為的影響 46
4-4 陶瓷體分析 50
4-4-1 微結構分析 50
4-4-2 相鑑定分析 55
4-5 α 及 β 相組成分析 57
4-6 熱膨脹行為分析 74
第五章 結論 86
參考文獻 87
附錄A 91
附錄B 93


1. J. Benito, X. Turrillas, G. Cuello, A. De Aza, S. De Aza, and M. Rodríguez, “Cordierite synthesis. A time-resolved neutron diffraction study, J. Eur. Ceram. Soc., 32 371–379 (2012).
2. T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, “Solid state synthesis and its characterization oh high density cordierite ceramics using fine oxide powder, Journal of the Ceramic Society of Japan, 118 [3] 246-249 (2010).
3. F. Hummel and H. Reid, “Thermal expansion of some glasses in the
system MgO-Al2O3- SiO2, J. Am. Ceram. Soc., 34 [10] 319-321 (1951).
4.劉育佐,低熱膨脹堇青石材料之製備及特性研究,遠東科技大學機械工程系碩士論文,民國九十七年。
5. A. Putnis, Introduction to mineral sciences, Cambridge university press (1992).
6. M. Hochella, JR. and G. Brown, JR., “Structural mechanisms of anomalous thermal expansion of cordierite-beryl and other framework silicates, J. Am. Ceram. Soc., 69 [1] 13-18 (1986).
7. M. Glendening and W. Lee, “Microstructure development on crystallizing hot-pressed pellet of cordierite melt-derived glass containing B2O3 and P2O5, J. Am. Ceram. Soc.,79 [3] 705-713 (1996).
8.鄭武輝等譯,工業陶瓷,徐式基金會出版社,民國七十四年。
9. I. Lachman, R. Bagley, and R. Lewis, “Thermal expansion of extruded cordierite ceramic, Ceramic Bulletin, 60 [2] 202-205 (1981).
10. J. Lee and J. Pentecost, “Properties of flux-grown cordierite single crystals, J. Am. Ceram. Soc., 59 [3-4] 183 (1976).
11. G. Fischer, D. Evans, and J. Geiger, “Crystal lattice thermal expansion of cordierite, Paper B-18, presented at the American Crystallographic Association Meeting at Pennsylvania State University, State College, 18-23 (1974).
12. M. Milberg and H. Blair, “Thermal expansion of cordierite, J. Am. Ceram. Soc., 60 [7-8] 372 (1977).
13. D. Evans, G. Fischer, J. Geiger, and F. Martin, “Thermal expansion and chemical modifications of cordierite, J. Am. Ceram. Soc., 63 [11-12] 629-634 (1980).
14. M. Hochella, Jr., G. Brown, Jr., F. Ross, and G. Gihhs, “High-temperature crvstal chemistry of hydrous Mg- and Fe-cordierite, Am. Mineral, 64 [3-4] 37-51 (1979).
15. P. Predecki and J. Haas, “Structural aspects of the lattice thermal expansion of hexagonal cordierite, J. Am. Ceram. soc., 70 [3] 175-182 (1987).
16. D. Agrawal and V. Stubican, “Germanium-modified cordierite ceramics with low thermal expansion, J. Am. Ceram. Soc., 69 [12] 847-851 (1986).
17. C.F. Yang, “The effect of Bi2O3 on the dielectric characteristics of CaO-Al2O3-MgO-SiO2 glass ceramics, J. Mater. Sci., 15 1618–1620 (1996).
18. S. Lo, C.F. Yang, “The sintering characterisitics of Bi2O3 added CaO-Al2O3-MgO-SiO2 glass powder, Ceram. Int., 24 139–144 (1998).
19. J. Gonzalez-Velasco, R. Ferret, R. Lopez-Fonseca, and M. Gutierrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction, Powder Technol. 153 34-42 (2005).
20. M. Camerucci, G. Urretavizcaya, and A. Cavalieri, “Sintering of cordierite based materials, Ceram. Int., 29 159-168 (2003).
21. W. Kingery, The proof test for ceramic processing, in: G.Y. Onoda Jr., L.L. Hench (Eds.), Ceramic Processing Before Firing, Wiley, Florida, 291-306 (1978).
22. M. Yokota, N. Saio, J. Hirai, A. Sato, and N. Kubota, “Crystal growth rate enhancement caused by adhesion of small crystals, AIChE J. 43 3264- 3270 (1997).
23.Y. hirose, H.doi, and O.kamigato, “Thermal expansion of hot-pressed cordierite glass ceramic, J. Mater. Sci. Lett., 3 153-155 (1984).
24. A. Shyam, E. Lara-Curzio, A. Pandey, T. Watkins, and K. More, “The thermal expansion, elastic and fracture properties of porous cordierite at elevated temperatures, J. Am. Ceram. Soc., 1-10 (2012).
25.G. Bruno, A. Efremov, B. Clausen, A. Balagurov, V. Simkin, B. Wheaton, J. Webb, and D. Brown, “On the stress-free lattice expansion of porous cordierite, Acta Mater., 58 [6] 1994-2003 (2010).
26. A. Shyam, E. Lara-Curzio, T. Watkins, and R. Parten, “Mechanical characterization of diesel particulate filter substrates, J. Am. Ceram. Soc.,91 [6] 1995-2001 (2008).
27. C. Bubeck, “Direction dependent mechanical properties of extruded cordierite honeycombs, J. Eur. Ceram. Soc., 29 3113-3119 (2009).
28. J. Banjuraizah, H. Mohamad, and Z. Ahmad, “Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method, Alloys and Compounds, 494 256-260 (2010).
29. M. Camerucci, G. Urretavizcaya, M. Castro, and A. Cavalieri, “Electrical properties and thermal expansion of cordierite and cordierite-mullite materials, J. Eur. Ceram. Soc., 21 2917-2923 (2001).
30. R. Johnson, I. Gannesh, B. Saha, G. Rao, and Y. Mahajan, “Solid state reactions of cordierite precursor oxides and effect of CaO doping on the thermal expansion behaviour of cordierite honeycomb structures, J. Mater. Sci., 38 2953-2961 (2003).
31. A. Miyashiro, T. Hyama, M. Yamasaki, and T. Miyashiro, “The polymorphism of cordierite and indialite, J. Am. Ceram. Soc.,253 185-208 1955.
32. A. Miyashiro, “Cordierite–indialite relations, J. Am. Ceram. Soc., 235 43-62 (1957).
33. H. Ohsato, J. S. Kim, and A.Y. Kim, C. I. Cheon, and K. W. Chae, “Millimeter-wave dielectric properties of cordierite/indialite glass ceramics, Jpn. J. Appl. Phys., 50 09NF01-05 (2011).
34. R. Goren , H. Gocmez, and C. Ozgur, “Synthesis of cordierite powder from talc, diatomite and alumina, Ceram. Int., 32 407-409 (2006).
35. R. Goren, C. Ozgur, and H. Gocmez, “The preparation of cordierite from talc, fly ash,fused silica and alumina mixtures, Ceram. Int., 32 53-56 (2006).
36. R. Morrell, Hand book of properties of technical & engineering ceramic, part 1: An introduction for the engineer and designer, HMSO, London (1989).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top