跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余珊
研究生(外文):ShanYu
論文名稱:以新穎式溶熱法合成銅銦硫硒粉體之研究
論文名稱(外文):Synthesis and characterization of CuIn(Sx,Se1-x)2 powders using a novel solvothermal route
指導教授:向性一
指導教授(外文):Hsing-I Hsiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:水熱溶熱法Ⅰ-Ⅲ-Ⅵ族太陽能電池銅銦硫硒
外文關鍵詞:solvothermal synthesisCISS solar cellschelating agentcation exchange
相關次數:
  • 被引用被引用:0
  • 點閱點閱:533
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ⅰ-Ⅲ-Ⅵ族系列化合物為目前較具潛力之薄膜太陽能電池材料,其直接能隙非常接近太陽光的波長範圍,其中CuIn(Sx,Se1-x)2材料可由硫化物與硒化物依照不同比例固溶而得,可調控能隙值(1.0eV~1.5eV)。Ⅰ-Ⅲ-Ⅵ族太陽能電池生產方式目前仍以真空製程為主,但其設備成本昂貴,且不利於大面積生產。本研究嘗試以非真空製程方式合成銅銦硫硒(CISS)材料,使用製程較簡單、成本相對較低之水熱溶熱法合成CISS粉體。由於水熱法製備易有金屬氫氧化物生成;溶熱法其反應時間相對較長,因此我們採用低成本、低毒性之新穎式溶熱法合成CISS粉體,可避免金屬氫氧化物之生成且大幅縮短反應時間。本研究以硝酸銅、氯化銦與硒粉作為前驅物,並藉由摻雜硫乙醇酸鈉(TGA)作為螯合劑、還原劑與硫源,於體積比1:1之水與乙二胺溶劑中反應獲得銅銦硫硒粉體,並透過改變前驅物比例、不同溶劑比例添加量、反應溫度與時間對生成機制之影響。
結果顯示在反應溫度200℃下經3小時可得到符合化學劑量之(CuIn(S0.25 Se0.75)2),且其粒徑尺寸約為200nm,以XRD計算晶格常數與吸收能隙值極接近CuIn(S0.25 Se0.75)2理論值。當添加過量硒含量(Se/(Cu,In) = 1.5)時,可有效消除二次與未知相;隨著乙二胺溶劑添加量增加,可加速溶解Cu2-xSe進而獲得銅銦硫硒單一相。改變反應溫度與時間其反應過程皆有相同趨勢,在低溫短時間下會獲得介穩態之Cu2-xSe,隨著溫度升高與長時間下,其結晶相會轉變為銅銦硫硒。以新穎式溶熱法合成CISS粉體之生成機制為: 反應初期在短時間與低溫下,由於銅離子活性較大容易與硒離子反應生成Cu2-xSe;第二階段當溫度升高及拉長反應時間時,硫硒化銦(In(S,Se))非晶質晶粒生成,伴隨著Cu2-xSe晶粒溶解於溶劑中轉變為溶液之單體;最終階段銅單體於(In(S,Se))非晶質表面進行離子交換反應,取代(In(S,Se))非晶質中空缺位子進而生成銅銦硫硒粉體。

TheⅠ-Ⅲ-Ⅵ compound was a more potential material of thin film solar cells due to a favorable band gap and relatively high absorption coefficient. Price weighing of sulfide and selenide were required for the synthesis of stoichiometry-controlled CuIn(Sx,Se1-x)2. So far, the vacuum process is still the main method to fabricate theⅠ-Ⅲ-Ⅵ solar cells. However, its cost is too high and it is difficult to produce high quality and large-areaⅠ-Ⅲ-Ⅵ films. In this study, CuIn(S0.25 Se0.75)2 powders were successfully prepared by a novel, cheap and nontoxic solvothermal synthesis method at 200℃ for 3 h using Cu(NO3)2, InCl3, and Selenium as the raw materials, sodium thioglycolate as S source, chelating agent and reducing agent. The effects of the stoichiometry-controlled, solvent composition, reaction temperature and time on the formation mechanism were investigated.
After reaction at 200oC for 3 h, a stoichiometric CuIn(S0.25 Se0.75)2 powders with the crystallite size of about 200nm can be obtained. The impurity could be eliminated by adding excess Se. Increasing the amount of ethylenediamine could hasten redissolve Cu2-xSe. Whether changing reaction temperature or time, the result demonstrated the same tendency. The formation mechanism of CuIn(S0.25 Se0.75)2 powders by the novel solvothermal process can be proposed as below. At first, Cu2-xSe crystallites nucleated. As the reaction time was prolonged, the amorphous Inx(S,Se)y powders were formed and Cu2-xSe crystallites were redissolved at the same time. Finally, copper ions would occupy the vacant sites of the amorphous Inx(S,Se)y powders via cation exchange reaction to become the CuIn(S0.25 Se0.75)2 powders.

中文摘要......................................I
ABSTRACT.....................................II
致謝..........................................III
目錄..........................................V
圖次..........................................VIII
表次..........................................XI
第一章 緒論....................................1
1-1前言.......................................1
1-2 研究目的...................................4
第二章 文獻回顧.................................5
2-1 Ⅰ-Ⅲ-Ⅵ 族薄膜型太陽能電池..................5
2-1-1 Ⅰ-Ⅲ-Ⅵ 族太陽能電池基本構造...............5
2-1-2 Ⅰ-Ⅲ-Ⅵ 族太陽能電池發展與簡介.............6
2-1-3 Ⅰ-Ⅲ-Ⅵ 族太陽能電池材料特性...............7
2-2 Ⅰ-Ⅲ-Ⅵ 族薄膜吸收層製備方法.................13
2-2-1 非真空製備Ⅰ-Ⅲ-Ⅵ 族吸收層之種類............13
2-2-2 Ⅰ-Ⅲ-Ⅵ 族吸收層粉體製備方法...............14
2-3 晶粒生成與成長模式...........................17
2-3-1 Ostwald ripening.........................19
2-3-2 化學相成份轉換反應(Chemical Transformation Reaction) 20
第三章 實驗步驟與分析方法..........................25
3-1 實驗藥品.....................................25
3-2 實驗流程.....................................26
3-2-1 以水熱法合成硒化銅銦粉體.....................26
3-2-2 以新穎式溶熱法合成銅銦硫硒粉體................27
3-3 實驗分析方法..................................28
3-3-1 結晶相鑑定(X-ray Diffraction)...............28
3-3-2 微結構分析..................................28
3-3-3 化學鍵結鑑定(傅利葉轉換紅外光分析光譜)..........28
3-3-4 紫外-可見光譜儀(UV-VIS-NIR)..................29
3-3-5化學分析影像能譜儀(ESCA)......................29
第四章 結果與討論..................................30
4-1 以水熱法製備硒化銅銦(CIS)粉體之結果..............30
4-1-1 純水熱法合成CIS粉體之結果.....................30
4-1-2 添加螯合劑水熱法合成CIS粉體之結果..............31
4-2 以新穎式溶熱法合成銅銦硫硒(CISS)粉體之結果........34
4-2-1 合成錯合物之光譜分析..........................34
4-2-2 以新穎式溶熱法合成CISS粉體之結果...............34
4-3 以新穎式溶熱法合成CISS粉體之機制探討.............39
4-3-1 前驅物比例對CISS粉體生成之影響.................39
4-3-2 不同溶劑比例添加量對合成CISS粉體之影響..........42
4-3-3 不同反應溫度對合成CISS粉體之影響...............46
4-3-4 不同反應時間對CISS粉體生成機制之影響............49
4-3-5 以新穎式溶熱法合成銅銦硫硒粉之生成機制探討.......53
第五章 結論........................................59
5-1 以水熱法合成硒化銅銦粉體.........................59
5-2 以新穎式溶熱法合成銅銦硫硒粉體....................59
5-3 改變不同參數對銅銦硫硒粉體生成機制之影響...........60
參考文獻...........................................61
附錄..............................................66
1.T. Ohashi, A. Jäger-Waldau, T. Miyazawa, Y. Hashimoto and I. Kentaro, CuIn(SxSe 1-x) 2 Thin Films by Sulfurization, Jpn. J. Appl. Phys., 34 4159-62 (1995).
2.J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, A Mild Solvothermal Route to Chalcopyrite Quaternary Semiconductor CuIn(SexS1 − x)2 Nanocrystallites, J. Mater. Chem., 11 1417-20 (2001).
3.http://solarbuster.com/yahoo_site_admin/assets/docs/Solar_Buster_30MW_CIGS_Manufacturing_Turnkey_System.16982620.pdf. Solar Buster CIGS 技术白皮书.. in.
4.T. Nakada and M. Mizutani, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers, Jpn. J. Appl. Phys., 41 L165-L67 (2002).
5.P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. MENNER, W. Wischmann and M. Powalla, Progress in Photovoltaic : Research and Applications, 18 453-53 (2011).
6.D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu and Y. Lu, Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps, Chemistry of Materials, 21 2489-93 (2009).
7.楊德仁, 太陽能電池材料. 五南圖書: 台北市, (2008).
8.M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Bara and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks for Printable Photovoltaics, J. Am. Chem. Soc., 130 16770-77 (2008).
9.H. Miyake, T. Hayashi and K. Sugiyama, Preparation of CuGaxIn1−xS2 Alloys from In Solutions, J. Cryst. Growth, 134 174 (1993).
10.M. Y. Chiang, S. H. Chang, C. Y. Chen, F. W. Yuan and H. Y. Tuan, Quaternary CuIn(S1−xSex)2 Nanocrystals: Facile Heating-Up Synthesis, Band Gap Tuning, and Gram-Scale Production, J. Phys. Chem. C, 115 1592-99 (2011).
11.卓昱佑, 以CuxSe(x=1,2)和InxSey(x=1,2,y=2.3)合成CuInSe2黃銅礦吸光材料之研究, 國立台南大學綠色能源科技所碩士論文 (2010).
12.M. Kaelin, D. Rudmann and A. N. Tiwari, Low Cost Processing of CIGS Thin Film Solar Cells, Solar Energy, 77 749-56 (2004).
13.N. Yamamoto, S. Ishida and H. Horinaka, Solid State Growth of CuInSe2 and CuInTe2, Jpn. J. Appl. Phys., 28 1780-83 (1989).
14.T. Wada and H. Kinoshita, Rapid Exothermic Synthesis of Chalcopyrite-Type CuInSe2, J. Phys. Chem. Solids, 66 1987-89 (2005).
15.T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada and M. Konagai, Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/Sintering Processes, Phys. Stat. Sol.(a), 203 2593-97 (2006).
16.S. Ahn, C. W. Kim, J. H. Yun, J. C. Lee and K. H. Yoon, Effects of Heat Treatments on the Properties of Cu(In,Ga)Se2 Nanoparticles, Solar Energy Mater. & Solar Cells, 91 1836-41 (2007).
17.C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites, J. Am. Chem. Soc., 115 8706-15 (1993).
18.M. T. Ng, C. B. Bootroyd and J. J. Vittal, One-Pot Synthesis of New-Phase AgInSe2 Nanorods, J. Am. Chem. Soc., 128 7118-19 (2006).
19.Z. Haizheng, L. Yunchao, Y. Mingfu, Z. Zhongzheng, Z. Yi, Y. Chunhe and L. Yongfang, A Facile Route to Synthesize Chalcopyrite CuInSe2 Nanocrystals in Non-Coordinating Solvent, Nanotechnology, 18 025602-07 (2007).
20.Y.-H. A. Wang, C. Pan, N. Bao and A. Gupta, Synthesis of Ternary and Quaternary CuInxGa1−xSe2 (0 ≤ x ≤ 1) Semiconductor Nanocrystals, Solid State Sciences, 11 1961-64 (2009).
21.J. Tang, S. Hinds, S. O. Kelley and E. H. Sargent, Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles, Chemistry of Materials, 20 6906-10 (2008).
22.J. Xiao, Y. Xie, R. Tang and Y. Qian, Synthesis and Characterization of Ternary CuInS2 Nanorods via a Hydrothermal Route, Journal of Solid State Chemistry, 161 179-83 (2001).
23.Y. Jin, K. Tang, C. An and L. Huang, Hydrothermal Synthesis and Characterization of AgInSe2 Nanorods, J. Cryst. Growth, 253 429-34 (2003).
24.C.-H. Wu, F.-S. Chen, S.-H. Lin and C.-H. Lu, Preparation and Characterization of CuInSe2 Particles via the Hydrothermal Route for Thin-Film Solar Cells, Journal of Alloys and Compounds, 509 5783-88 (2011).
25.B. Li, Y. Xie, J. Huang and Y. Qian, Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, Adv. Mater., 11 1456-59 (1999).
26.L. Zhang, J. Liang, S. Peng, Y. Shi and J. Chen, Solvothermal Synthesis and Optical Characterization of Chalcopyrite CuInSe2 Microspheres, Materials Chemistry and Physics, 106 296-300 (2007).
27.V. K. Lamer and R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc., 72 4847 (1950).
28.T. Sugimoto, Preparation of Monodispersed Colloidal Particles, Adv. Colloid Interface Sci., 28 65-108 (1987).
29.J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals, Chem. Int. Ed., 46 4630-60 (2007).
30.X. Peng, J. Wickham and A. P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth : Focusing of Size Distributions, J. Am. Chem. Soc., 120 5343 (1998).
31.P. W. Voorhees, The Theory of Ostwald Ripening., J. Statistical Phys., 38 [Nos. 1/2] (1985).
32.D. Fairhurst and R. W. Lee, Aggregation, Agglomeration-How to Avoid Aggravation When Formulating Particulate Supensions., Drug Delivery Tech., 8 [8] 48 (2008).
33.G. D. Moon, S. Ko, Y. Xia and U. Jeong, Chemical Transformations in Ultrathin Chalcogenide Nanowires., American Chemical Society, 4 2307-19 (2010).
34.T. Mokari, A. Ahroni, I. Popov and U. Banin, Diffusion of Gold into InAs Nanocrystals., Angew. Chem., 45 8001-05 (2006).
35.Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect., Science, 304 711-14 (2004).
36.R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang and A. P. Alivisatos, Spontaneous Superlattice Formation in Nanorods through Partial Cation Exchange., Science, 317 355-58 (2007).
37.J. Krustok, J. Madasson, M. Altosaar and P. E. Kukk, The Nature of Recombination Centres in Silver- and Chlorine- Doped CdS Phosphors., J. Phys. Chem. Solids, 51 1013-18 (1990).
38.C. D. Lokhande, V. V. Bhad and S. S. Dhumure, Conversion of Tin Disulphide into Silver Sulphide by a Simple Chemical Method., J. Phys. Chem. D: Appl. Phys., 25 315-18 (1992).
39.M. Ristova and M. Ristov, XPS Profile Analysis on CdS Thin Film Modified with Ag by an Ion Exchange., Appl. Surf. Sci., 181 68-77 (2001).
40.D. H. Son, S. M. Hughes, Y. Yin and A. P. Alivisatos, Cation Exchange Reactions in Ionic Nanocrystals., Science, 306 1009-12 (2004).
41.S. E. Wark, C. H. Hsia and D. H. Son, Effects of Ion Solvation and Volume Change of Reaction on the Equilbrium and Morphology in Cation-Exchange Reaction of Nanocrystals., J. Am. Chem. Soc., 130 9550-55 (2008).
42.I. M. Kolthoff, The Solubilities and Solubility Products of Metallic Sulphides in Water., J. Phys. Chem. , 35 2711-21 (1931).
43.G. Hodes, Chemical Solution Deposition of Semiconductor Film. Marcel Dekker, Inc.: New York, (2003).
44.D. R. Lide, CRC Handbook of Chemistry and Physics, CRC-Press: Boca Raton, FL, (2009).
45.Y. Min, G. D. Moon, J. Park, M. Park and U. Jeong, Surfactant-Free CuInSe2 Nanocrystals Transformed from In2Se3 Nanoparticles and their Application for a Flexible UV Photodetector., Nanotechnology, 22 465604 (2011).
46.S. A. Wood and I. M. Samson, The Aqueous Geochemistry of Gallium, Germanium, Indium and Scandium, Ore Geology Reviews, 28 57-102 (2006).
47.Naoto, Geological Survey of Japan Open File Report NO.419 (May, 2005 ).
48.R. Xie, M. Rutherford and X. Peng, Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors., J. Am. Chem. Soc., 131 5691-97 (2009).
49.J. McMurry and E. Simanek, Fundamentals of Organic Chemistry., (2007).
50.江旻益, 銅銦鎵硒、銅銦硫硒與銅銦鎵硫硒奈米粒子合成與其薄膜太樣能電池的應用, 國立清華大學化學工程學系碩士論文 (2010).
51.K.-H. Kim, Y.-G. Chun, B.-O. Park and K.-H. Yoon, Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route., Materials Science Forum, 449-452 273-76 (2004).
52.L. D. Partain, R. A. Schneider, L. F. Donaghey and P. S. Mcleod, Surface Chemistry of CuxS and CuxS/CdS Determined from X‐Ray Potoelectron Sectroscopy, J. Appl. Phys., 57 5056-65 (1985).
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top