跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳駿頤
研究生(外文):Chung-YiChen
論文名稱:以滴定塗裝法製備二元膠體晶體及其自組裝行為探討
論文名稱(外文):Synthesis and self-assembly of binary colloidal crystals by drop-coating method
指導教授:吳毓純
指導教授(外文):Yu-Chun Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:二元膠體晶體滴定塗裝法
外文關鍵詞:Binary colloidal crystalDrop-coatingcrystallizationself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用滴定塗裝法來合成二元膠體晶體探討製程參數對於二元膠體晶體結構之影響。首先利用Stöber Process製備粒徑從160至780 nm之不同大小的球形二氧化矽粒子,以不同粒徑比(RS/RL)及數量比(NS/NL)的配比方式,將兩種大小不同的二氧化矽球形粒子分散於水中,形成二元膠體溶液。膠體溶液的濃度分別控制在1-5 wt%之間。將均勻分散的懸浮液以滴管吸取滴在經過親水處理之玻片上,而後再放置於恆溫恆濕器中,以不同溫度或溼度來進行乾燥。乾燥後之膠體晶體膜以掃描式電子顯微鏡觀察其排列樣貌。實驗結果顯示溫度、溼度、兩種不同顆粒粒徑尺寸比、兩種不同顆粒粒徑數量比以及懸浮液重量百分濃度均與最後的晶體結構具有相當的關連性。當中又以溫度為最具影響力的參數。實驗溫度範圍控制在40-90℃,由於懸浮液中的粒子間有著布朗運動的效應,因此有一最低溫度點,該溫度點為提供粒子動能的最低限度能量,一旦達到此動能便可產生有序膠體晶體排列,此後隨著溫度的上升,粒子有著足夠的動能去移動,且促使膠體晶體膜的整齊範圍增大,當溫度到達90℃時可達到最大範圍整齊的膠體晶體膜。此外,當懸浮液的濃度上升時,可使膠體溶液單位體積內因顆粒數量變多,導致粒子可活動空間變小,亦有助於膠體粒子之有序排列。實驗結果同樣也顯示濕度的影響,晶體結構會隨濕度的上升或下降而改變,當溼度上升整體的蒸發速率下降,導致中間的補償流無法將粒子帶至液滴邊緣乾燥,因此中央部分濃度升高後,粒子開始有凝聚的現象破壞晶體結構。而不同的粒徑比也對膠體晶體的結構具有十分的影響力,結果顯示當參數條件穩定,粒徑比介於0.17到0.23時會得到有序膠體晶體膜,而不同的顆粒數量比會致使顆粒與顆粒的間隙拉大,改變晶體型態。因此如何控制這些參數是製備二元有序膠體晶體的關鍵。接著利用紫外-近紅外光光譜儀量測製備的二元膠體晶體,得到二元膠體晶體系統中,其呈現的吸收峰同時存在一元膠體系統與二元膠體系統的吸收峰,隨著粒徑比的上升,兩系統的比例會開始上升,同時晶體間的孔隙率逐漸下降,當粒徑比為0.2時有一最佳條件。
This present work investigated the influence of synthetic parameters upon the self-assembly behavior and the structure of binary colloidal crystal. In this study, spherical silica particles with size ranging from 135 to 780 nm were synthesized via Stöber process and the binary colloidal crystals were prepared by drop-coating method. Two different silica spheres with different sizes ratios (RS / RL) and number ratios (NS / NL) ratio were dispersed in water to form binary colloidal solutions for the film deposition. The binary colloidal solution was drop on a hydrophilic treated glass slide and dried under various temperatures and relative humidities. According to the experiment results, the temperature was found to be one of the most important factors determining the giving structure of the colloidal crystal. The ordered range of the binary colloidal crystal films was enlarged with increasing the temperature due to the enhancement of diffusion mobility of the colloidal particles. Accordingly, the optimal temperature for obtaining an ordered binary colloidal crystal is set at 90ºC. In addition, the increase of the concentration of the colloidal solution was also beneficial for the formation of a dense and ordered colloidal crystal structure due to the increase of the collision probability among particles that leads to a better dispersion between two different colloidal particles during the drying process.
During the crystallization of colloidal crystal, the large colloidal particles play a predominant role for the arrangement where the small particles are filled in the interstices. Therefore, a dense and ordered structure can be only obtained at a size ratio ranging from 0.17- 0.23. As the size ratio is higher than 0.17, the large particles become no longer predominant for the arrangement and finally results in a disorder arrangement. Besides, the number ratio over 80 is necessary to obtain a three-dimensional ordered colloidal crystal; otherwise, the number of small particles are not enough to fill the whole interstices among large particles.

Abstract I
摘要 III
誌謝 V
表目錄 VIII
圖目錄 IX
第一章、前言 1
1. 1研究動機 1
1. 2研究目的 2
第二章、相關理論 3
2. 1光子晶體之性質與應用 3
2. 1. 1 光子晶體的簡介 3
2. 1. 2 光子晶體的光學性質 7
2. 2 膠體晶體的製備 10
2. 2. 1 自然重力沉降法 11
2. 2. 2 垂直沉降法 12
2. 2. 3等溫誘導加熱自組裝法 13
2. 2. 4電極誘導沈積法 14
2. 2. 5磁場誘導沈積法 15
2. 2. 6 滴定塗裝法 16
2. 3影響滴定塗裝法之相關參數討論 19
2. 3. 1膠體溶液的穩定性 19
2. 3. 2 凡德瓦爾作用力 ( van der waals force ) 20
2. 3. 3 靜電作用力 ( electrostatic force ) 22
2. 3. 4. DLVO理論 23
2. 3. 5 溫度的影響 26
2. 3. 6 皮立克數( Peclet number)、毛細力數以及Maragoni number 28
2. 3. 7碰撞頻率 34
第三章、實驗方法與步驟 35
3. 1、製備均一粒徑球型的二氧化矽膠體球 36
3. 2 二氧化矽膠體球之性質量測 40
3. 3膠體晶體之製備 43
3. 4性質量測與分析 45
第四章、結果與討論 46
4. 1影響滴定塗裝法之相關參數探討 46
4. 1. 1溫度對膠體粒子自組裝的影響 46
4. 1. 2相對溼度對膠體粒子自組裝的影響 51
4. 1. 3液滴濃度對膠體粒子自組裝的影響 55
4. 1. 4不同粒徑尺寸對膠體粒子自組裝的影響 58
4. 1. 5不同顆粒比對膠體粒子自組裝的影響 64
4. 2膠體晶體的光學性質分析 72
4. 2. 1不同粒徑尺寸比的影響 72
第五章、結論 79
參考文獻 81

1.T. Taton, D. Norris, “ Defective promise in photonics, Nature, 416, 685 (2002).
2.E. Yablonovitch, “ Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, 58, 2059 (1987).
3.S. I. Matsushita, T. Miwa, D. A. Tryk and A. Fujishima, “ New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir, 14, 6441 (1998).
4.G. A. Ozin, S. M. Yang, The race for the photonic chip: colloidal crystal assembly in silicon wafers, Advanced Functional Materials, 11, 95 (2001).
5.Q. Zhou, P. Dong, L. Liu, B. Cheng, Study on the sedimentation self-assembly of colloidal SiO2 particles under gravitational field, Colloids and Surfaces A, 253, 169 (2005).
6.H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A.Mifsud, V. Fornes, “ Control of Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by sintering, Advanced Materials, 10, 480 (1998).
7.R. C. Salvarezza, L. Vazquez, H. Miguez, R. Mayoral, C. Lopez, F. Meseguer, “ Edward-Wilkinson Behavior of Crystal Surfaces Grown By Sedimentation of SiO2 Nanoparticles, Physical Review Letter, 77, 4572 (1996).
8.D. D. Brewer, J. Allen, M. R. Miller, J. M. de Santos, S. Kumar, D. J. Norris, M. Tsapatsis, L. E. Scriven, “ Mechanistic Principles of Colloidal Crystal Growth by Evaporation-Induced Convective Steering, Langmuir, 24, 13683 (2008).
9.P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, “ Single-Crystal Colloidal Multilayers of Controlled Thickness, Chemistry of Materials, 11, 2132 (1999).
10.J. Wang, S. Ahl, Q. Lin, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, U. Jonas, “ Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition, Journal of Materials Chemistry, 18, 981 (2008).
11.Y. A. Vlasov, X. Z. Bo, J. C. Strum, D. J. Norris, Q. Yan, Z. Zhou, X. S. Zhao, “ On-chip natural assembly of silicon photonic bandgap crystals, Nature, 414, 289 (2001).
12.X. Huang, J. Zhou, M. Fu, B. Li, Y. Wang, Q. Zhao, Z. Yang, Q. Xie, L. Li, “ Binary Colloidal Crystals with a Wide Range of Size Ratio via Template-Assisted Electric-Field-Induced Assembly, “ Langmuir, 23, 8695 (2007).
13.Q. Yan, Z. Zhao, X. S. Zhao, “ Inward-Growing Self-Assembly of Colloidal Crystal Films, Langmuir, 21, 3158 (2005).
14.S. John, “ Strong localization of phontons in certain disordered dielectric superlattices, Physical Review Letters, 58, 2486 (1987).
15.J. C. Knight, T. A. Birks, J. Mangan, P. St. J. Russell, “ Microstructured silica as an optical-fiber material, MRS Bulletin, 8, 614 (2001).
16.A. Polman, P. Wiltzius, “ Materials science aspects of phontonic crystals, MRS Bulletin, 8, 608 (2001).
17.A. J. Turberfield, “ Phontonic crystals made by holographic lithography, MRS Bulletin, 8, 632 (2001).
18.許智偉、鄭淑芳、周禮君,光子晶體之製備及其與化學感測上的應用,中國化學會會誌,63,431 (2005)。
19.http://svenskopalimport.se/opal_type.html.
20.http://tw.myblog.yahoo.com/chang-5758/article?mid=17579&next=17570&l=f&fid=33 (2010/11/12).
21.http://163.20.160.24/~t364/modules/tinyd0/index.php?id=11 (2012/06/02).
22.http://tupian.hudong.com/a0_76_05_01300000174719121461056046924_jpg.html (2008/06/28).
23.http://tupian.hudong.com/89536/18.html?prd=zutu_thumbs (2011/08/09).
24.P. G. Hewitt, “ Conceptual physics, eight edision, Wesley, 27, 496 (1998).
25.P. A. Hiltner, I. M. Krieger, “ Diffraction of light by ordered suspensions, The Journal of Physical Chemistry, 73, 2386 (1969).
26.E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, D. M. Bloom, “ Teraherz Spectroscopy of 3-Dimensional Photonic Band-gap Crystals, Optics Letters, 19, 1155 (1994).
27.V. Kitaev, G. A. Ozin, “ Self-Assembly Surface Patterns of Binary Colloidal Crystals, Advanced Materials, 15, 75 (2003).
28.蔡佩樺,以等溫加熱蒸發誘導自組裝法製備一元及二元膠體晶體之探討,國立成功大學資源工程學系,碩士論文,中華民國99年。
29.M. Golosovsky, Y. Saado, D. Davidov, “ Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials, Applied Physics Letters, 75, 4168 (1999).
30.李柏緯,以滴定塗裝法製備膠體晶體及其性質之探討,國立成功大學資源工程學系,碩士論文,中華民國100年。
31.J. G. Fleming, S. Y. Lin, “ Three-dimensional photonic crystal with a stop band from 1.35 to 1.95μm, Optics Letters, 24, 49 (1999).
32.X. Zhang, S. Shen, L. Fan, “ Uniform polystyrene paticles by dispersion polymerization in different dispersion medium, “ Polymer bulletin, 61, 1926 (2008).
33.J. S. Reed, “ Principles of ceramics processing, Second edition, New York, 88 (1986).
34.J. N. Israelachvili, “ Intermolecular and surface forces, Second edition, Academic Press, London (1992).
35.M. J. Rosen, “ Surfactants and interfacial phenomena, second edition, Wiley, New York (1988).
36.J. A. Lewis, “ Colloidal processing of ceramic, Journal of the American Ceramic Society, 83, 2341 (2000).
37.J. Wiley, S. Ltd, “ Colloids and Interfaces with Surfactants and Polymers (An Introduction) , USA (2007).
38.王子瑜、曹恒光,布朗運動、郎之萬方程式、與布朗運動學,物理雙月刊,456,中華民國94年。
39.S. G. Yiantsios, B. G. Higgins, “ Marangoni flows during drying of colloidal films, Physics of Fluids, 18, 082103-1 (2006).
40.W. Stöber, A. Finks, E. Bohn, “ Controlled growth of monodispersed silica spheres in the micron size range, Journal of Colloidal and Interface Science, 26, 62 (1968).
41.S. K. Park, K. D. Kim, H. T. Kim, “ Preparation of silica nanoparticles : determination of the Preparation of silica nanoparticles, Colloids and Surfaces, 197, 7 (2002).
42.S. L. Chen, P. Dong, G. H. Yang, J. J. Yang, “ Kinetics of formation of monodispersed colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate, Industrial & Engineering Chemistry Research, 35, 4487 (1996).
43.孫祉偉、朱如曾、李銀妹、徐升華、樓立人,物理化學學報,1081,中華民國92年。
44.P. Kumnorkaew, J. F. Gilchrist, “ Effect of Nanoparticle Concentration on the Convective Deposition of Binary Suspensions, Langmuir, 25, 6070 (2009).
45.F. Kopnov, V. Lirtsman, D. Davidov, “ Self-Assembled Colloidal Photonic Crystals, Synthetic Metals, 137, 993 (2003).
46.S. Reculusa, P. Masse, S. Ravaine, “ Three-dimensional colloidal crystals with a well-defined architecture, Journal of Colloid and Interface Science, 279, 471 (2004).
47.S. Wong, V. Kitaev, G. A. Ozin, “ Colloidal Crystal Films: Advances in Univerality and Perfection, Journal of the American Chemical Scociety, 125, 15589 (2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top