跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明勲
研究生(外文):Ming-HsunLin
論文名稱:潛在微量毒性元素之累積與毒性優先順序指標之建置–以澎湖海水淡化廠為例–
論文名稱(外文):Potentially toxic trace elements accumulating and hazard ranking in the outfall area of a desalination plant of Penghu Island
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:潛在微量毒性元素海水淡化廠海水海底沉積物生物累積作用毒性優先順序指標
外文關鍵詞:Potentially toxic trace elementDesalination plantSeawaterSedimentBioaccumulationHazard ranking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:2
本研究以澎湖海水淡化廠為例,來評估海水淡化廠放流水對海洋環境所造成的衝擊,其潛在微量毒性元素之調查包含銅、鋅、鉛、鉮、鉻、鎘和汞。從研究中發現銅、鋅及砷之潛在微量毒性元素濃度可在海底沉積物中偵測出,其濃度會從海水淡化廠排放管的出水口處隨距離增加而逐漸遞減。經由海水淡化廠放流水水質偵測結果,顯示其放流水濃度遠低於放流水水質標準,但海水淡化廠之放流水可能增加海底沉積物之銅、鋅及鉮濃度,而鉻、鉛、鎘及汞可能不是從海水淡化廠所釋放出來的。存在於離岸50公尺處海洋生物之微量毒性元素濃度調查結果,顯示其生物體內之潛在微量毒性元素濃度包含銅、鋅、鉛、鉮、鉻、鎘和汞等,濃度會隨時間增加呈現隨機分佈,因而無法觀察出生物濃度累積作用。另外,海水的銅、鋅及鉮濃度於海平面下1、25及50公尺深有彼此正相關性,其說明濃度擴散具有相關性。且鉮濃度空間分佈趨勢中,可發現在海水淡化廠排放管的出水口處及離岸1000公尺至3000 公尺處其鉮濃度比週遭環境濃度低。毒性優先順序指標來推測潛在毒性污染物對環境的影響,指出其結果在海水中須先考量銅濃度(毒性優先順序指標=0.32),海底沉積物中需先考量砷濃度(毒性優先順序指標=0.51),若海水與海底沉積物綜合討論需先考量砷 (毒性優先順序指標=0.56),其次為鋅(毒性優先順序指標=0.54),此指標可作為未來優先改善之依據。
This study evaluated the environmental impact of seawater desalination effluent discharged into a water body by investigating potentially toxic trace elements in the outfall area of a desalination facility on the southeastern coast of Penghu Island (Taiwan). Trace element concentrations are analyzed using various samples (sediment, water and bivalves). Copper, zinc and arsenic were detected in sediment samples in the outfall area and decreased progressively as one moved away from this area. A contour plotting technique was applied to assess and visualize trace element pollution point sources (inputs) in the study area. Bivalve samples such as oysters and clams were collected 50 m from the desalination coastal area. Trace element concentrations in bivalves varied randomly. A clear increasing tendency over time (bioaccumulation) was not observed. Temporal trends of trace element concentrations are investigated by comparing biannual concentrations for a 2-year period (2006–2007). Analytical results demonstrate that only As in seawater had an increasing trend after 2006. Further, more a hazard index (HI) is applied to assess the potential hazard of contaminants to the environment. If the priority is to improve water quality, focus should be placed on Cu (HI=0.32). On the other hand, if the priority is sediment quality, the As concentration (HI=0.51) should be reduced. If the two HIs (seawater and sediment) are considered together, As (HI=0.56) becomes the highest-ranking trace element, followed by Zn (HI=0.54).
中文摘要 Ⅰ
Abstract Ⅲ
謝誌 Ⅴ
目錄 Ⅵ
圖目錄 Ⅸ
表目錄 ⅩⅠ
符號 ⅩⅢ
第一章 前言 1-1
1.1、研究緣起 1-1
1.2、研究架構 1-4
1.3、研究目的 1-5
1.4、研究內容 1-5
第二章 文獻回顧 2-1
2.1、澎湖地區水源狀況 2-1
2.2、澎湖地區地質狀況 2-4
2.3、海水淡化處理程序 2-6
2.4、放流水成份 2-7
第三章 材料與方法 3-1
3.1、海水與海底沉積物之採樣位置 3-1
3.2、放流水之採樣位置 3-3
3.3、海底沉積物之採樣方式 3-5
3.4、海底沉積物之分析方式 3-5
3.5、生物體之採樣與分析 3-6
3.6、數值分析 3-7
3.7、毒性優先順序指標之評估方式 3-7
第四章 結果與討論 4-1
4.1、海底沉積物之濃度分佈 4-1
4.2、放流水之濃度分佈 4-8
4.3、生物體內之濃度分佈 4-12
4.4、時間分佈趨勢與其相關性 4-17
4.5、空間分佈趨勢 4-27
4.6、毒性優先順序指標 4-42
第五章 結論與建議 5-1
5.1、結論 5-1
5.2、建議 5-3
參考文獻 6-1
hlf, W., Hollert, H., Neumann-Hensel, H., Ricking, M. (2002). A guidance for the assessment and evaluation of sediment quality: A German approach based on ecotoxicological and chemical measurements. J. Soils Sediments 37-42.
2.Al-Ketbi, F.S., Isnasious, E.Z., Al-Mohyas, A.M. (1993). Practical observations on reverse osmosis plants including raw water contamination problems, different intake station and permeator performance. Desalination 93:259-272.
3.Chapman, P.M. (1990). The sediment quality triad approach to determining pollution-induced degradation. The Science of the Total Environment 97/98 815–825.
4.Chen, C.W., Kao, C.M., Chen, C.F., Dong, C.D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66:1431–1440.
5.Cossa, D. (1988). Cadmium in Mytilus spp: worldwide survey and relationship between seawater and mussel content. Marine Environment Resource 26:265-284.
6.Danoun, R. (2008) Desalination plants: potential impact of brine discharge on marine life. Sydney, Australia: The Ocean Technology Group 59 pp.
7.Greenaway, P. (1998) Ion and water balance. Biology of Land Crabs 7:211-248.
8.Han, B.C., Jeng, W.L., Hung, T.C., Ling, Y.C., Shieh, M.J., Chien, L.C. (2000). Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution 109:147-156.
9.Han, B.C., Jeng, W.L., Jeng, M.S., Kao, L.T., Meng, P.J., Huang, Y.L. (1997). Rock-shells (Thais clavigera) as an indicator of As, Cu and Zn contamination on the Putai coast of the Black-Foot Disease area in Taiwan. Archives of Environmental Contamination and Toxicology 32:456-461.
10.Han, B.C., Jeng, W.L., Hung, T.C., Wen, M.Y. (1996). Relationship between copper speciation in sediments and bioaccumulation by marine bivalves of Taiwan. Environmental Pollution 91:35-39.
11.Han, B.C., Jeng, W.L., Hung, T.C., Jeng, M.S. (1994). Copper intake and health threat by consuming seafood from copper-contaminated coastal environments in Taiwan. Environmental Toxicology and Chemistry 13:775-780.
12.Han, B.C., Hung, T.C. (1990). Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution 65:347-362.
13.Hoepner, T., Lattemann, S. (2002). Chemical impacts from seawater desalination plants-a case study of the northern Red Sea. Desalination 152:133-140.
14.Hoepner, T. (1999). A procedure for environmental impact assessment (EIA) for seawater desalination plants. Desalination 124:1-12.
15.Hsueh, Y.M., Cheng, G.S., Wu, M.M., Yu, H.S., Kuo, T.L., Chen, C.J. (1995). Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. British Journal of Cancer 71: 109-114.
16.Huang, K.M., Lin, S. (2003). Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere 53:113-1121.
17.Hung, J.J., Hsu, C.L. (2004). Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin 49:986–998.
18.Langston, W.J. (1986). Metals in sediments and benthic organisms in the Mersey estuary. Estuarine, Coastal and Shelf Science 23:239-261.
19.Langston, W.J. (1982). Distribution of mercury in British estuarine sediments and its availability to deposit-feeding bivalves. Journal Marine Biology Association UK 62:667-684.
20.Lin, M.H., Lee, C.H., Lin, Y.C., Yang, K.H. (2011). Potentially toxic trace elements accumulating in marine sediment and bivalves in the outfall area of a desalination plant. Desalination and Water Treatment 25 106-112.
21.Miri, R., Chouikhi, A. (2005). Ecotoxicological marine impacts from seawater desalination plants. Desalination 182:403-410.
22.Netherlands Ministry of Housing (2002), Spatial Planning and the environment, Circular on target values and intervention values for soil remediation, http://www.vrom.nl/international.
23.Pantazidou, M., Kapniaris, S., Katsiri, A., Christidis, A. (2007). Pollutant trends and hazard ranking in Elefsis Bay, Greece. Desalination 210:69-82.
24.Rauret, G., Lopez-Sanchez,, J.F., Ahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitaring 1:57–61.
25.Sadiq, M. (2002). Metal contamination in sediments from a desalination plant effluent outfall area. The Science of the Total Environment 287:37-44.
26.Sadiq, M., Al-Mohanna, H., Zaidi, T.H. (1993). Metal contamination of sediments in the Tarut Bay area of the Arabian Gulf. Arabian Journal for Science and Engineer 18:231-242.
27.Sadiq, M., Zaidi, T.H. (1985). Metal concentrations in sediments from the Arabian Gulf coast of Saudi Arabia. Bulletin of Environmental Contamination and Toxicology 34:565-571.
28.SPSS, (2009). PAWS Statistics 18 for Window, SPSS Inc., 233 S. Wacker Dr., Chicago, IL 60606, USA. www.spss.com
29.US Environment Protection Agency (EPA). (2002). National Recommended Water Quality Criteria, EPA-822-R-02-047.
30.Voutchkov, N. (2008) Salinity tolerance evaluation methodology for desalination plant discharge. Desalintion and Water Treatment, Washington Boulevard, USA: Poseidon Resource Corporation 326 pp.
31.Wright, D.A., Zamuda, C.D. (1987). Copper accumulation by two bivalves molluscs: salinity effect is independent of cupric ion activity. Marine Environment Resource 23:1-14.
32.Wang, F., Chen, J. (2000) Relation of sediment characteristics to trace metal concentrations: a statistical study. Water Research 1.4:694-698.
33.台灣海水淡化網,線上檢索日期:2011年10月31日,網址:http://www.taiwandesal.com.tw/
34.經濟部水利署全球資訊網,線上檢索日期:2011年10月31日,網址:http://www.wra.gov.tw/
35.經濟部水利署地下水觀測網,線上檢索日期:2011年10月31日,網址:http://pc183.hy.ntu.edu.tw/
36.澎湖縣政府全球資訊網,線上檢索日期:2011年10月31日,網址:http://www.penghu.gov.tw/
37.澎湖縣環保局 (1996)。土壤重金屬調查概況。業務統計及研究報告,澎湖。
38.曾仲寧(2009)。整合性海岸管理應用在海水淡化廠環境影響評估之研究。碩士論文,國立成功大學,台南。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top