跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴方羚
研究生(外文):Fang-LinLai
論文名稱:以蛇紋岩製備堇青石、亞藍寶石粉末及其陶瓷體之研究
論文名稱(外文):A study on the preparation of cordierite and sapphirine powders and their ceramics from serpentine
指導教授:雷大同
指導教授(外文):Da-Tung Ray
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:蛇紋岩堇青石假藍寶石固態反應
外文關鍵詞:serpentinecordieritesapphirinesolid state reaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
  蛇紋岩是本省礦產資源中僅次於大理石,儲量居第二位的非金屬礦產資源,儲量達20億噸,年產量約為25萬公噸,主要作為鋼鐵工業助熔劑之用。由MgO-Al2O3-SiO2三成份系統相圖可知,在常壓下此系統中含有堇青石(Mg2Al4Si5O18)及亞藍寶石(Mg4Al10Si2O23)二個三元礦物。本研究將提純之蛇紋岩與高嶺土混合,以固態反應方式,合成堇青石及亞藍寶石,並進一步製備陶瓷體,測試其熱、介電及物理性質。
  結果顯示,蛇紋岩與高嶺土混合,在1300℃以上可合成堇青石,在1400℃以上可合成亞藍寶石。在1300℃燒結所得堇青石陶瓷體,密度可達98 %理論密度,熱膨脹係數為1.5x10-6,相對介電常數約為2(1 kHz~ 1MHz),品質因子最大約為80(1 MHz)。在1450℃燒結所得亞藍寶石密度可達86 %理論密度。
Serpentine is the second largest industrial mineral in Taiwan, R.O.C., with a reserve of about 2 billions, which is only less than that of marble. The annual output is about 250,000 tons, mainly used as a flux in the iron and steel industry. There are two ternary minerals, i.e. cordierite (Mg2Al4Si5O18) and sapphirine(Mg4Al10Si2O23) in the MgO-Al2O3-SiO2 ternary system at atmospheric pressure. In this study, serpentine, kaolinite and other oxides were mixed at appropriate proportions and were subjected by solid state reaction to synthesize cordierite and sapphirine. The ceramics were prepared from the synthesized powders, and their thermal, dielectric and physical properties were measured.
  The results show that cordierite can be synthesized from serpentinite mixed with kaolinite at temperatures above 1300℃. Sapphirine can be synthesized above 1400℃. The cordierite ceramic body sintered at 1300℃ has a density of 98% theoretical. The thermal expansion coefficient is about 1.5x10-6. The relative dielectric constant of is approximately 2 (1 kHz ~ 1MHz). The quality factor is about 80 (1 MHz). The sapphirine sintered at 1450℃has a density only 86% of theoretical.
摘要 I
Abstract II
表目錄 V
圖目錄 VI
誌謝 IX
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的 9
第2章 理論基礎與前人研究 10
2.1 固態反應之原料及產物 10
2.1.1 蛇紋岩 10
2.1.2 高嶺石 12
2.1.3 堇青石 15
2.1.4 亞藍寶石 19
2.2 電路基板所需之材料性質 21
2.3 燒結性質 24
2.4 固態反應合成堇青石粉末之研究 28
2.5 堇青石陶瓷體燒結之研究 28
第3章 實驗方法與步驟 30
3.1 材料 30
3.1.1 蛇紋岩及除鐵前處理 30
3.1.2 高嶺土 33
3.1.3 其他原料 36
3.2 步驟 37
3.2.1 煆燒粉末之製備 37
3.2.2 陶瓷體之製備 40
3.3 性質分析 40
3.3.1 晶相分析 40
3.3.2 熱重熱差分析 40
3.3.3 化學分析 40
3.3.4 粉末比表面積 41
3.3.5 掃描式電子顯微鏡觀察 41
3.3.6 粒徑分佈 42
3.3.7 燒結體視密度與孔隙率 42
3.3.8 熱膨脹係數 42
3.3.9 介電常數與品質因子之量測 43
第4章 結果與討論 45
4.1 蛇紋岩、高嶺土加熱性質及產物 45
4.1.1 蛇紋岩 45
4.1.2 高嶺土 47
4.2 堇青石合成 49
4.2.1 反應溫度對堇青石相生成之影響 49
4.2.2 持溫時間對(1S+3K)配方生成堇青石之影響 52
4.2.3 不同蛇紋岩/高嶺土配比對堇青石生成之影響 56
4.2.4 煅燒粉末之比表面積 60
4.2.5 煆燒粉末之顯微觀察 60
4.3 堇青石燒結體之製備 63
4.3.1 燒結溫度對相對密度之影響 63
4.3.2 燒結溫度對顯微結構之影響 65
4.3.3 燒結溫度對熱膨脹係數之影響 65
4.3.4 燒結溫度對介電性質及品質因子之影響 70
4.4 亞藍寶石合成 74
4.4.1 原料配比對亞藍寶石相生成之影響 74
4.4.2 持溫時間對亞藍寶石生成之影響 76
第5章 結論 78
參考文獻 79
附錄A Standard Atomic Absorption Conditions 82
附錄B 熱膨脹係數升溫、降溫曲線圖 85
附錄C 燒結體之介電常數及品質因子 91
附錄D 安德利森瓶(Andreasen pipette)粒徑分佈量測步驟 94
附錄E 阿基米德密度量測數據 98
[1] L. Tan and H. Chuay, Serpentinite of the Fengtien–Wanyung area, Hualien, Taiwan, Acta Geologica Taiwan, pp. 52-68, 1979.
[2] 陳其瑞及曾保忠,“花蓮縣萬榮地區蛇紋岩調查研究報告,臺灣省礦務局,台北市,民國79年。
[3] 陳其瑞,“東部石礦資源及礦業,礦業技術,28卷,民國79年。
[4] 經濟部礦務局網站:http://www.mine.gov.tw/
[5] 魏稽生及譚立平,臺灣非金屬經濟礦物,經濟部中央地質調查所編印,民國88年12月。
[6] 溫紹炳,雷大同及黃紀嚴,台灣片狀矽酸鹽礦物之利用開發, 經濟部礦業司,民國89年12月。
[7] Phase Diagrams for Ceramists, vol. 1, The American Ceramic Society, Inc., 1964.
[8] W. Schreyer and F. Seifert, High-Pressure Phases in the System MgO-Al2O3-SiO2-H2O, American Journal of Science, vol. 267-A, pp. 407-443, 1969.
[9] M. D. Karkhanavala and F. A. Hummel, Reactions in the System Li2O–MgO–Al2O3–SiO2: I, The Cordierite-Spodumene Join, Journal of the American Ceramic Society, vol. 36, pp. 393-397, 1953.
[10] A. J. Moulson, Electroceramics : materials, properties, applications. London, New York, Chapman and Hall, 1990.
[11] L. H. Van Vlack, Physical ceramics for engineers, Addison Wesley Publishing Company, 1964.
[12] Z. Acimovic, L. Pavlovic, L. Trumbulovic, L. Andric and M. Stamatovic, Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry, Materials Letters, vol. 57, pp. 2651-2656, 2003.
[13] M. T. Malachevsky, J. E. Fiscina and D. A. Esparza, Preparation of Synthetic Cordierite by Solid‐State Reaction via Bismuth Oxide Flux, Journal of the American Ceramic Society, vol. 84, pp. 1575-1577, 2001.
[14] 林禎堂,陳立軒及傅勝利,“堇青石玻璃粉粒大小對基板燒結之影響, 義守大學學報, pp. 69-84, 民國86年。
[15] J. R. González-Velasco, R. Ferret, R. López-Fonseca and M. A. Gutiérrez-Ortiz, Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction, Powder Technology, vol. 153, pp. 34-42, 2005.
[16] R. Goren, C. Ozgur and H. Gocmez, The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures, Ceramics International, vol. 32, pp. 53-56, 2006.
[17] Y. Kobayashi, K. Sumi and E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceramics International, vol. 26, pp. 739-743, 2000.
[18] T. Ogiwara, Y. Noda and O. Kimura, Fabrication of high density cordierite ceramics using a coal fly ash, Journal of the Ceramic Society of Japan, vol. 118, pp. 231-235, 2010.
[19] T. Ogiwara, Y. Noda, K. Shoji and O. Kimura, Solid state synthesis and its characterization of high density cordierite ceramics using fine oxide powders, Journal of the Ceramic Society of Japan, vol. 118, pp. 246-249, 2010.
[20] N. Sampathkumar, A. Umarji and B. Chandrasekhar, Synthesis of [alpha]-cordierite (indialite) from flyash, Materials research bulletin, vol. 30, pp. 1107-1114, 1995.
[21] C. Klein and C. S. Hurlbut, Manual of mineralogy, 22nd ed., John Wiley & Sons, Inc., 2002.
[22] I. Kostov, Mineralogy, Oliver and Boyd, 1968.
[23] W. Smykatz-Kloss, Differential thermal analysis : application and results in mineralogy, Springer-Verlag, 1974.
[24] R. E. Grim, Clay mineralogy, McGraw-Hill, 1953.
[25] U.S. Geological Survey, Mineral year book, 2008.
[26] A. Putnis, Introduction to Mineral Sciences, Cambridge University Press, 1992.
[27] C. Klein and B. Dutrow, Mineral Science, John Wiley & Sons, Inc., 2008.
[28] M. D. Glendenning and W. E. Lee, Microstructural Development on Crystallizing Hot‐Pressed Pellets of Cordierite Melt‐derived Glass Containing B2O3 and P2O5, Journal of the American Ceramic Society, vol. 79, pp. 705-713, 1996.
[29] M. Karkhanavala and F. Hummel, The polymorphism of cordierite, Journal of the American Ceramic Society, vol. 36, pp. 389-392, 1953.
[30] J. Banjuraizah, H. Mohamad and Z. A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin, Journal of Alloys and Compounds, vol. 482, pp. 429-436, 2009.
[31] F. J. Torres and J. Alarcón, Effect of additives on the crystallization of cordierite-based glass-ceramics as glazes for floor tiles, Journal of the European Ceramic Society, vol. 23, pp. 817-826, 2003.
[32] M. K. Naskar and M. Chatterjee, A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study, Journal of the European Ceramic Society, vol. 24, pp. 3499-3508, 2004.
[33] 魏炯權,電子陶瓷材料,初版,臺北市,全華,民國93年。
[34] Z. Shi, K. Liang and S. Gu, Effects of CeO2 on phase transformation towards cordierite in MgO-Al2O3-SiO2 system, Materials Letters, vol. 51, pp. 68-72, 2001.
[35] W. A. Deer, Rock-forming minerals, 2nd ed, Halsted Press, 1978.
[36] P. B. Moore, Crystal structure of sapphirine, Nature, vol. 218, pp. 81-82, 1968.
[37] W. D. Kingery, Introduction to ceramics, 2nd ed, John Wiley & Sons, Inc., 1976
[38] 吳朗,電子陶瓷 : 介電,全欣資訊,臺北市,民國93年。
[39] S. Wang, H. Zhou and L. Luo, Sintering and crystallization of cordierite glass ceramics for high frequency multilayer chip inductors, Materials research bulletin, vol. 38, pp. 1367-1374, 2003.
[40] R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, Journal of Applied Physics, vol. 32, pp. 787-792, 1961.
[41] M. F. Ashby, A first report on sintering diagrams, Acta Metallurgica, vol. 22, pp. 275-289, 1974.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top