跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊佑
研究生(外文):Chun-YuChen
論文名稱:使用車載與空載光達對公路邊坡辨識之分析比對
論文名稱(外文):Identification of Highway Slope with Mobile and Aerial LiDAR Data
指導教授:余騰鐸余騰鐸引用關係
指導教授(外文):Ting-To Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:車載光達光達融合死角道路邊坡辨識
外文關鍵詞:Mobile LiDARLiDAR fusionblind spothighway slopeidentification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討車載與空載光達對於公路邊坡的辨識能力,由於兩種光達的點雲資料都有各自的死角,透過檢視光達點雲的融合來分析車載與空載光達對於公路邊坡的點雲涵蓋率及解析能力。

空載光達為往下掃描死角多為垂直向遮蔽如樹木,與坡度陡峭的地區也會因為落差大造成遮蔽死角而缺少資料點。車載光達使用兩個與測量車行進方向夾45°的掃描頭進行掃描,死角多發生在公路轉彎處、邊坡坡面不平整或者是邊坡坡度改變處,對下邊坡的量測則受限於掃描頭和道路外緣的夾角與下邊坡的坡度。

空載光達雖可補足車載光達的死角但在點密度上有巨大的差異,而車載光達於測量車可行經處且無死角產生時也能補足空載光達在精度與點雲密度上的不足。

本研究透過車載光達的高密度點雲產製5 cm間距的DEM,並進行球狀點雲密度的計算與紋理分析,將成果二值化並萃取特徵後,可明顯辨別人工邊坡與天然邊坡的不同。並討論空載光達與車載光達在資料處理、產製DEM、公路邊坡上的應用。
This study shows the identification capabilities of mobile and aerial LiDAR for highway slope. Because these two kind of LiDAR all have its own blind spots. By examining the fusion of these LiDAR to check the completeness of point cloud coverage to the highway slope.

Aerial LiDAR is a downward scanning so it’s blind spot mostly result from vertical shadow like trees, or the steep slope. The mobile laser scanners are typically mounted at a 45° angle with respect to the vehicle track. The blind spot of it usually occurred at the corner of highway、uneven slope surface or highangle changing slope.

Although aerial LiDAR data can complete mobile LiDAR data’s coverage but there is a huge difference within point cloud density. And the mobile LiDAR can strength aerial LiDAR data’s accuracy and also the point density within the scannable region.

This study use high point density of mobile LiDAR data to produce 5 cm in-terval DEM, and then performing the circular point density calculation and texture analysis. After the binarized of result then extract the feature, it could clearly identify the difference between nature and artificial slope.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程與架構 2
第二章 文獻回顧 4
2.1 光達介紹 4
2.2 空載光達 6
2.3 車載光達 11
2.4 光達融合 12
第三章 研究方法 14
3.1 研究工具 14
3.1.1 車載光達 14
3.1.2 空載光達 16
3.1.3 E3De 17
3.2 資料整理 19
3.2.1 資料來源 19
3.2.2 區域選取 20
3.2.3 資料前處理 24
3.3 DEM產製 27
第四章 研究成果與討論 31
4.1 點雲比較區 31
4.2 無崩塌區 38
4.3 崩塌區 42
4.4 邊坡辨識區 46
4.5 討論 52
4.5.1 資料處理 52
4.5.2 DEM 52
4.5.3 道路邊坡 53
4.5.4 車載光達 54
第五章 結論與建議 56
5.1 結論 56
5.2 建議 57
參考文獻 58
Ackermann, F. (1999). Airborne laser scanning-present status and future expectations. Isprs Journal of Photogrammetry and Remote Sensing, 54(2), 64-67.
Amann, M. C., Bosch, T., Lescure, M., Myllylä, R., & Rioux, M. (2001). Laser ranging: a critical review of usual techniques for distance measurement. Optical Engineering, 40, 10.
Bachman, C. G. (1979). Laser radar systems and techniques. Dedham, Mass., Artech House, Inc., 1979. 203 p., 1.
Baltsavias, E. P. (1999a). Airborne laser scanning: basic relations and formulas. Isprs Journal of Photogrammetry and Remote Sensing, 54(2), 199-214.
Baltsavias, E. P. (1999b). Airborne laser scanning: existing systems and firms and other resources. Isprs Journal of Photogrammetry and Remote Sensing, 54(2), 164-198.
Baltsavias, E. P. (1999c). A comparison between photogrammetry and laser scanning. Isprs Journal of Photogrammetry and Remote Sensing, 54(2), 83-94.
Briese, C., & Pfeifer, N. (2001). Airborne laser scanning and derivation of digital terrain models.
Buckley, S. J., Howell, J., Enge, H., & Kurz, T. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625-638.
Bucksch, A., & Lindenbergh, R. (2008). Campino--a skeletonization method for point cloud processing. Isprs Journal of Photogrammetry and Remote Sensing, 63(1), 115-127.
Dubayah, R. O., & Drake, J. B. (2000). Lidar remote sensing for forestry. Journal of Forestry, 98(6), 44-46.
El-Sheimy, N., Schwarz, K., & Gravel, M. (1995). Mobile 3-D positioning using GPS/INS/video cameras.
Ellum, C., & El-Sheimy, N. (2000). The development of a backpack mobile mapping system. International Archives of Photogrammetry and Remote Sensing, 33(B2; PART 2), 184-191.
Graham, L. (2010). Mobile mapping systems overview. Photogrammetric engineering and remote sensing, 76(3), 222-228.
Grejner-Brzezinska, D. A. (2001). Mobile mapping technology: Ten years later (part one). Surveying and Land Information Systems, 61(2), 75-92.
Hug, C., & Wehr, A. (1997). Detecting and identifying topographic objects in imaging laser altimeter data. International Archives of Photogrammetry and Remote Sensing, 32(3 SECT 4W2), 19-26.
Hyyppä, J., Hyyppä, H., Litkey, P., Yu, X., Haggrén, H., Rönnholm, P., et al. (2004). Algorithms and methods of airborne laser-scanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 82-89.
Iavarone, A., & Vagners, D. (2003). Sensor fusion: generating 3D by combining airborne and tripod-mounted LIDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34, 5.
Jelalian, A. (1992). Laser radar syeterns: Bostion: Artech House.
Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. Isprs Journal of Photogrammetry and Remote Sensing, 53(4), 193-203.
Lato, M. J., Diederichs, M. S., & Hutchinson, D. J. (2010). Bias correction for view-limited Lidar scanning of rock outcrops for structural characterization. Rock mechanics and rock engineering, 43(5), 615-628.
Lato, M. J., Diederichs, M. S., Hutchinson, D. J., & Harrap, R. (2012). Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Natural Hazards, 1-34.
Lemmens, M. (2007). Terrestrial laser scanners. GIM international, 21(8).
Li, R. (1997). Mobile mapping: An emerging technology for spatial data acquisition. The Map Reader, 170-177.
Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28(7), 1016-1031.
Magnussen, S., Eggermont, P., & LaRiccia, V. N. (1999). Recovering tree heights from airborne laser scanner data. Forest Science, 45(3), 407-422.
Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art. Isprs Journal of Photogrammetry and Remote Sensing, 64(1), 1-16.
McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57(3), 331-351.
Meng, X. (2005). A slope-and elevation-based filter to remove non-ground measurements from airborne LIDAR data. UCGIS Summer Assembly.
Meng, X., Currit, N., & Zhao, K. (2010). Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sensing, 2(3), 833-860.
Meng, X., Wang, L., & Currit, N. (2009). Morphology-based building detection from airborne LIDAR data. Photogramm. Eng. Remote Sens, 75(4), 437-442.
Meng, X., Wang, L., Silván-Cárdenas, J. L., & Currit, N. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. Isprs Journal of Photogrammetry and Remote Sensing, 64(1), 117-124.
Næsset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner data. Isprs Journal of Photogrammetry and Remote Sensing, 52(2), 49-56.
Novak, K. (1995). Mobile mapping technology for GIS data collection. Photogrammetric engineering and remote sensing, 61(5), 493-501.
Razak, K., Straatsma, M., van Westen, C., Malet, J. P., & de Jong, S. (2011). Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology, 126(1), 186-200.
Ruiz, A., Kornus, W., Talaya, J., & Colomer, J. (2004). Terrain modeling in an extremely steep mountain: A combination of airborne and terrestrial lidar.
Schwarz, K., & El-Sheimy, N. (2007). Digital mobile mapping systems–state of the art and future trends. Advances in Mobile Mapping Technologies, Eds. V. Tao and J. Li, ISPSR Book Series, 3-18.
Schwarzbach, F. (2009). Suitability of Different LIDAR Data Sets for 3D Mapping of the Road Environment. Photogrammetrie-Fernerkundung-Geoinformation, 2009(2), 117-127.
Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. Isprs Journal of Photogrammetry and Remote Sensing, 59(1), 85-101.
Sturzenegger, M., & Stead, D. (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4), 163-182.
Tao, C. V. (2000). Mobile mapping technology for road network data acquisition. Journal of Geospatial Engineering, 2(2), 1-14.
Toth, C. K. (2009). R&D of mobile LIDAR mapping and future trends. Paper presented at the ASPRS 2009 Annual Conference, Baltimore, Maryland.
Wehr, A., & Lohr, U. (1999). Airborne laser scanning - an introduction and overview. [Article]. Isprs Journal of Photogrammetry and Remote Sensing, 54(2-3), 68-82. doi: 10.1016/s0924-2716(99)00011-8
Zampa, F., & Conforti, D. (2009). Mapping with Mobile Lidar. GIM international, 23(4), 35-37.
台灣儀器行. (2010). 加拿大Optech LYNX行動光達測量系統
劉春, 陳華雲, & 吳杭彬. (2009). 激光三維遙感的數據處理與特徵提取: 科學出版社.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top