跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉振峰
研究生(外文):Chen-FengYeh
論文名稱:低放射性廢棄物場址核種傳輸之研究-以台東達仁場址為例
論文名稱(外文):Radionuclide Migration in Low-level Radioactive Waste Site at Daren, Taitung
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:核種傳輸TOUGH2放射性廢棄物處置
外文關鍵詞:radionuclide transportTough2low-level radioactive waste disposal sites
相關次數:
  • 被引用被引用:3
  • 點閱點閱:588
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要根據台東達仁場址之地形、地質構造、水文地質等資料建立現地水文地質概念模型,並利用地下水質能傳輸模式TOUGH2,針對場址的地下水的情況進行模擬,並加入放射性核種,探討核種傳輸之路徑及範圍。本研究對核種傳輸,分為近場處置窖工程障壁與遠場地質圈分別進行核種傳輸研究,並以達仁場址為例。於近場處置窖情況,本文先假設場址因外力而造成破壞,核種隨地下水經由破裂處向地質圈擴散之情況,文中先探討核種於破裂處傳輸之行為並配合模擬場址地下水流場,接著假設場址洩漏處有一斜交之裂隙,探討核種於裂隙中傳輸之路徑及範圍。另外,於遠場地質圈模擬,本文建立七種不同洩漏案例,評估場址發生洩漏後於地質圈傳輸之路徑、範圍及對環境影響之程度,以作為場址安全評估及監測設置的依據。
近場模擬結果顯示,考慮核種以1 kg/s速度從處置窖洩漏後,經由處置窖破裂處傳輸0.5 m到達地下水面,傳輸時間為5 小時;核種到達地下水面後,經由縱向之裂隙繼續向下傳輸,傳輸5 小時後到達橫向裂隙並經由橫向裂隙向外持續擴散。由於核種經由處置窖到達地下水面所經時間甚短,因此各核種到達地下水面之濃度與初始濃度之差異低於1%。遠場模擬部分,為了瞭解11種核種最終濃度之不同,模擬達仁場址中央以1 kg/s速度發生洩漏,傳輸方向與地下水流一致,由場址向東方及東北方擴散,核種大約於4年到達海邊,傳輸距離為1200 m。核種到達時間及平衡濃度不同,是由於半衰期影響核種之最終濃度,半衰期越長之核種,最終濃度越高。11種核種中,最終濃度前三高分別為Cs-137、Sr-90 、Co-60,最終濃度分別為初始濃度的2.30%、2.29%、1.88%。
若分別考慮處置場北端、中央、南端位置發生核種洩漏時,模擬結果顯示核種可能到達範圍約為處置場東方至東北方,傳輸距離約為1200 m。模擬成果亦可知,若考慮處置場南端與北端位置發生核種洩漏時,由於地下水流方向不同,導致北端與中央核種流向東北方,南端流向為東方,如處置場未來有監測井設置之需求,為涵蓋可能洩漏產生至少須設置處置場東方及北偏東45度兩處監測井。另外,探討核種於不同洩漏速度造成之影響情況,假設核種以1 kg/s、0.1 kg/s、0.01 kg/s之不同洩漏量於處置場發生全面性洩漏時,到達海邊之最終平衡濃度分別為初始濃度3.2%、0.343%、0.035%,結果顯示當洩漏程度不同時,其擴散範圍不同,到達海邊時間也不同,洩漏量越小,擴散範圍越小,影響環境程度亦較小。

The purpose of the research is to investigate the groundwater flow and migration of nuclides for low-level radioactive waste in Daren, Taitung, Taiwan. The numerical program, TOUGH2, was applied in the site to establish a hydro-geologically conceptual model which is based on terrain, geological, and hydrological parameters etc. Two cases of near-field and far-field were studied in the research. In the case of near-field, the nuclides transport behavior was investigated under the assumption that the engineering barrier was broken. In the case of far-field, the nuclides transport behavior was discussed under the consideration for the nuclides leakage from different positions to geologic cycle. Several scenarios with near-field and far-field cases in Daren site were supposed to simulate the migration of nuclides in order to understand the influence range and distribution of concentration.
Results in near-field case showed that due to the depth of groundwater level is not deep, the concentration of different nuclides took almost the same time to reach the groundwater level. Then the nuclides were transported to geologic cycle by the way of the fracture. Since the time of nuclides arriving at groundwater level was short, the difference of various concentrations was insignificant. In the far-field cases, the migration path of nuclide transport was the same with the groundwater flow. The half-life of radionuclide is an important factor of which affected the final concentration and diffusion area when nuclides reach the sea boundary in simulation cases. As 11 simulation radionuclides were assigned to release under 1 kg/s leakage rate, the results indicated that , , and had higher final concentration are 2.30%, 2.29%, and 1.88%, respectively.
Simulation results indicated that the radionuclide was leaked with rate 1 kg/s in three positions with northern, central, and southern locations of Daren site, respectively, the influence range of radionuclide transport was along east to northeast of site and the transport distance was about 1200m. Results also showed that the radionuclide transport direction for northern and central location was along northeast and transport direction for southern location was along east. It implied that the monitoring wells shall be built in the northeast and south of Daren site in the future. Furthermore, as compared among leakage rate 1 kg/s, 0.1 kg/s, and 0.01 kg/s, the ratios of maximum concentration to initial concentration are 3.2%, 3.43%, and 0.035%, respectively, when the radionuclide was arrived at sea boundary. It indicated the leakage rate is a magnificent factor in radionuclide transport.
中文摘要................................................. I
英文摘要................................................. III
致謝.................................................... V
目錄................................................... VI
表目錄.................................................. VIII
圖目錄.................................................. IX
第一章 緒論.............................................. 1
1-1 研究背景與動機....................................... 1
1-2 放射性廢棄物介紹..................................... 2
1-3 研究方法與流程....................................... 7
第二章 前人研究.......................................... 10
2-1 破裂面岩體水力模型.................................... 10
2-2 場址研究............................................. 21
第三章 TOUGH2理論模式.................................... 25
3-1 地下水流流場模式...................................... 25
3-1-1 達西定律(Darcy’s Law).............................. 25
3-1-2 流體連續方程式..................................... 26
3-2 溶質傳輸基本理論...................................... 27
3-2-1 質能守恆方程式..................................... 28
3-2-2 對流-擴散方程式.................................... 29
3-2-3 匯源項............................................ 31
3-3 數值程式介紹......................................... 33
第四章 達仁低放射性最終處置場址案例研究..................... 39
4-1 研究區域介紹......................................... 39
4-1-1 地形.............................................. 39
4-1-2 區域地質........................................... 41
4-2 達仁場址核種傳輸模擬.................................. 46
4-2-1 模式驗證........................................... 46
4-2-1-1 一維裂隙模式驗證.................................. 47
4-2-1-2 三維裂隙模式驗證.................................. 56
4-2-2 達仁場址近場數值模擬................................ 65
4-2-3 達仁場址遠場數值模擬................................ 71
4-2-3-1 遠場水文地質概念模型建立........................... 71
4-2-3-2 遠場案例探討..................................... 77
第五章 結論與建議......................................... 89
5-1 結論................................................ 89
5-2 建議................................................ 91
參考文獻................................................. 92


1.Abelin. H., et al., “ Migration in a Single Fracture :Experiment Results and Evaluation, Final report, Stripa Project, Tech. Rep. 55-03, Swed. Nucl.Ful and Waste Manage. Co.(SKB),Stochholm. (1985)
2.Ahn, J., et al., “Analysis of Radionuclide Transport Through Fracture Networks by Percolation Theory, Journal of Nuclear Science, Vol. 28, No. 5, pp.433-491 (1991).
3.Kenichi, A., Kostner, A., and Neuman, S.P., “ Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augres, France, revisited, Hydrogeology Journal., 11 521–535 (2003).
4.Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N., “ Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks, Journal of Appl Math Mech, Vol.24, No.5, pp.1286-1303 (1960).
5.Bear, J., “Dynamics of Fluids in Porous Media, Elsevier, New York, (1972).
6.BEARD, Dynamics of Fluids in porous Media, American Elsevier Publishing Company, Inc., New York, N.Y.(1972), reprinted by Dover Publications,Inc.,(1988).
7.Berkowitz, B., “Analysis of fracture network connectivity using percolation theory. Mathematical Geology, Vol. 27, No. 4, pp.467-483 (1995). Bibby, R., “Mass Transport of Solutes in Dual-porosity Media, Water Resource Research, Vol.17, pp.1071-1075(1981).
8.Berkowitz, B., Jacob, B., and Carol, B., “Continuum models for contaminant transport in fractured porous formations, Water Resources Research, Vol.24, No.8, pp. 1225-1236, August 1988.
9.Botros, F.E., et al., “On mapping fracture networks onto continuum, Water Resour. Res., 44, W08435, doi:10.1029/2007WR006092. (2008).
10.Cacas, M.C., Daniel, J.M., and Letouzey, J., “Nested geologicalmodelling of naturally fractured reservoirs, Petroleum Geoscience, 7 S43–S52, (2001).
11.Chen, R.H., Lee, C.H., and Chen G.S., “Evaluation of Transport of Radioactive Contaminant in Fractured Rock. Environmental Geology, Vol.41, pp.440-450 (2001).
12.Delay, F., Kaczmaryk, A., and Ackerer, P., “Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media “Advances in Water Resources, Vol. 30, pp. 314–334 (2007).
13.Deng, H., et al., “Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies, Water Resour. Res., 46, W06501, doi:10.1029/2009WR008363. (2010).
14.Dershowitz, W., et al., “A FracMan: interactive discrete feature data analysis, geometric modeling, and exploration simulation, version 2.6.User documentation , Golder’s Associates, Seattle, Washington, (1998).
15.Dershowitz, W.S., and Miller, I., “Dual Porosity Fracture Flow and Transport,Geophys Res Lett , Vol.22, pp.1441-1444 (1995).
16.Donald, M.R., Benson, D.A., and Meerschaert, M.M., “Transport of conservative solutes in simulated fracture networks: 2. Ensemble solute transport and the correspondence to operator-stable limit distributions, Water Resource Research 44, W05410, doi:10.1029/2007WR006858, (2008b).
17.Dreuzy, J.R., Davy, P., and Bour, O., “Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.EffectiveConnectivity, Water Resource Research, Vol.37, No 8, pp.2065-2078 (2001).
18.Englman, R.Y., Gur, Y., and Jaeger, Z., “Fluid Flow Through A Crack Network in Rocks, “ Journal of Applied Mechanic, Vol. 50, pp. 707-711 (1983).
19.Frampton. A., and Cvetkovic, V., “Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks, Advances in Water Resource, doi:10.1016/j.advwatres.2008.07.010, (2008).
20.Fransson, A., “A case study to verify methods for estimating transmissivity distributions along boreholes.“ Hydrogeology Journal, Vol. 15, pp. 307–313 (2007).
21.Freeze R.A., and Cherry, J.A., Groundwater, Prentice-Hall, Englewood Cliffs, N. J.(1979)
22.Golden, J.M., “Percolation Theory And Models of Unsaturated Porous Media, Water Resource Research, Vol.16, No 1, pp.201-209 (1980).
23.Gorby Y.A, “Microbial Reduction of Cobalt(III)EDTA(-) in the presence and Absence of Manganese(IV) Oxide “ Environmental Science & Technology ,Vol32, pp.244-250,1998.
24.Granet, S.P., Fabrie, P.L., and Quintard, M., “A two-phase f low simulation of a fractured reservoir using a new fissure element method, Journal of Petroleum Science and Engineering, 32, 35– 52, (2001).
25.Hadermann, J., and Heer, W., “The Grimsel (Switzerland) Migration Experiment: Integrating Field Experiments, Laboratory Investigations And Modelling, Journal of Contaminant Hydrology, Vol. 21, pp. 87-100(1996).
26.Halihan, T., Love, A., and Sharp, J.M., “Identifying connections in a fractured rock aquifer using ADFTs. Ground Water, Vol. 43, No. 3, pp.327-335 (2005).
27.Huyakorn, P.S., Lester, B.H., and Faust, C.R., “Finite Element Techniques forModeling Groundwater Flow in Fractured Aquifers, Water Resource. Research, Vol.19, No.4, pp.1019-1035 (1983).
28.Iwai, K., “Fundamental Studies of Fluid Flow Through a single fracture, Ph.D. Dissertation, University of California, Berkeley (1976).
29.Johnson, J., and Brown, S.R., “Experimental mixing variability in intersecting natural fractures, Geophys. Res. Lett., 28(22), 4303-4306, (2001).
30.Kelly, E.J, Lysimeter Studies to investigate the Leaching of Am-241 from Low-Level Radioactive-Waste, Journal of Alloys and Compounds, Vol271,pp.227-230,1998.
31.Le Borgne, T., et al., “Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers “Journal of Hydrology, Vol. 345, pp.134–148 (2007).
32.Lee, C.H., Deng, B.W., and Chang, J.L., “A Continuum Approach for Estimating Permeability in Naturally Fractured Rocks, Engineering Geology, Vol.39, pp.71-85(1995).
33.Lin, B.S., and Lee, C.H., “Percolation and Dispersion of Mass Transport in Saturated Fracture Network, Water Resource Management, Vol. 12, pp. 409-432. (1998).
34.Lin, B.S., and Lee, C.H., “Percolation and Dispersion of Mass Transport in Saturated Fracture Network, Water Resource Management, Vol. 12, pp. 409-432. (1998).
35.Lin, B.S., Lee, C.H., and Hwang, H.H., “Analysis of Mass Transport Through Fractured Networks using Percolation Theory Approach, Journal of The Chinese Institute of Environment Engineers, Vol. 7, No. 1, pp. 1-11. (1997).
36.Lin, B.S., Lee, C.H., and Yu, J.L., “Analysis of Groundwater Seepage of Tunnels in Fracture Rock, Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160. (2000).
37.Long, J.C.S., Remer, C.R., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability of Fracture Networks, Water Resource Research, 90(B4), 3087-3098 , (1985).
38.Long, J.C.S., et al., “Porous Media Equivalents for Networks of Discontinuous Fractures, Water Resource Research, Vol.18, No 3, pp.645-648 (1982).
39.Martinez L.L., and Carrera, J., “An analysis of hydraulic conductivity scale effects in granite-Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland, Water Resour. Res., 41(3), (2005).
40.McLaren, R.G., et al., “Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms, Journal of Contaminant Hydrology, Vol. 43, pp.211–38 (2000).
41.McLaren, R.G., et al., “Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms, Journal of Contaminant Hydrology, Vol. 43, pp.211–38 (2000).
42.Moench, A.F., “Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture skin, Water Resource Research, 20(7), 831-846,(1984).
43.Mourzenko, V.V., et al., “Solute transport at fracture intersections, Water Resource Research. 38(1), 1000, doi:10.1029/2000WR000211,(2002).
44.Moussa K., et al., “Matrix-fracture exchange in a fractured porous medium: stochastic upscaling, C. R. Mecanique, 332, 679-686 (2004).
45.Nakaya, S., and Nakamura, K., “Percolation conditions in fractured hard rocks: A numerical approach using the three‐dimensional binary fractal fracture network (3D‐ BFFN)model, J. Geophys. Res., 112, B12203, doi:10.1029/2006JB004670,(2007).
46.Nathalie, V.M., et al., “Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data “, Hydrogeology Journal, Vol. 15, pp.225–240 (2007).
47.Nguyen, T.S., et al., “Hydro-mechanical Response of A Fractured Granitic Rock Mass to Excavation of A Test Pit-The Kamaishi Mine Experiment in Japan, International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp.79-94 (2001).
48.Oda, M., “Permeability Tensor for Discontinuous Rock Masses, Geotech, 35,483-495 ,(1985).
49.Park, Y.J., et al., “Transport behavior in three-dimensional fracture intersections, Water Resources Research, 39(8), doi: 10.1029/2002WR001801 (2003)
50.Pruess, K., “TOUGH User's Guide, Nuclear Regulatory Commission Report NUREG/CR-4645; also: Lawrence Berkeley Laboratory Report LBL-20700,Berkeley, CA, 1987.
51.Pruess, K., Oldenburg, C.M., and Moridis, G., “TOUGH2 User’s Guide, Version 2.0, Lawerence Berkeley National Laboratory Report LBNL 43134, November (1999).
52.Roubinet, D., de Dreuzy, J.R., and Davy, P., “Connectivity‐ consistent mapping method for 2 ‐ D discrete fracture networks, Water Resour. Res., 46, W07532, doi:10.1029/2009WR008302,(2010).
53.Rowe, R.K., and Booker, J.R., “A semi-analytic model for contaminant migration in a regular two- or three-dimensional fractured network: conservative contaminants, International Journal for Numerical and Analytical Methods in Geomechanics, 13, 531-550, (1989)
54.Samardzioska, T., and Popov, V., “Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media, Advances in Water Resource, 28, 235– 255, (2005).
55.Sawada, A., et al., “Non-sorbing Tracer Migration Experiments in Fractured Rock at The Kamaishi Mine, Northeast Japan, Eng Geology, Vol. 56, pp. 75-96(2000).
56.Schwartz, F.W., and Smith, L.A, “Continuum Approach for Modeling Mass Transport in Fractured Media, Water Resource Research, 19(4),959-969,(1988).
57.Schwartz, F.W., Smith, L., and Crowe, A.S., “A stochastic analysis ofmacroscopic dispersion in fractured media, Water Resour. Res., 19(5), 1253–1265, (1983).
58.Smith, L., and Schwartz, F.W., “An analysis on the influence of fracture geometry on mass transport in fractured media, Water Resour. Res., 20(9), 1241– 1252, (1984).
59.Snow, D.T., “ A Parallel Plate Model of Fractured Permeable Media Ph. D dissertation,“University of Californi, Berkely ,(1965).
60.Stockman, H.W., Johnson, J., and Brown, S.R., “Mixing at fracture intersections: Influences of channel geometry and the Reynolds and Peclet numbers, Geophys. Res. Lett., 28(22), 4299-4302, (2001).
61.Surrette, M., Allen, D.M., and Journeay, M., “Regional evaluation of hydraulic properties in variably fractured rock using a hydro-structural domain approach, Hydrogeology Journal, 16: 11–30, (2008).
62.Tang, D.H., Frind, E.O., and Sudicky, E.A., “Contaminant transport in fractured porous media: analytical solution for a single fracture, Water Resour. Res., 17(3), 555-564, (1981)
63.Vilks, P., and Baik, M.H., “Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture, “ Journal of Contaminant Hydrology, Vol. 47, pp. 197-210(2001).
64.Vilks, P., and Baik, M.H., “Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture, Journal of Contaminant Hydrology, Vol. 47, pp. 197-210(2001).
65.Vilks, P., Frost, L.H., and Bachinski, D.B., “Field-scale Colloid Migration Experiments in A Granite Fracture, “ Journal of Contaminant Hydrology, Vol. 26, pp. 203-214(1997).
66.Viswanathan, H.S, “A Reactive Transport Model of Neptunium Migration from the potential Repository at Yucca Mountain, Journal of Hydrology, Vol 209,pp.251-280,1998.
67.Wang, J.S.Y., et al., “Field Tests and Model Analyses of Seepage into Drifts, Journal of Contaminant Hydrology, Vol.38, pp.323-347(1999).
68.Warren, J.E., and Root, P.J., “The Behavior of Naturally Fractured Reservoirs, Trans. Soc. Pet. Eng. AIME, Vol.3, No.3, pp.245-255(1963).
69.Xu, C., et al., “A Connectivity Index for Discrete Fracture Networks, Mathematical Geology, 38(5): 611-634, (2006).
70.Zhang, X., and Sanderson, D.J., “Numerical Modelling of the Effects of Fault Slip on Fluid Flow around Extensional Faults, “Journal of Structural Geology, Vol. 18, pp. 108-119, (1996).
71.Zhang, X., Harkness, M., and Last, N.C., “Evaluation of Connectivity Charaecteristics of Naturally Jointed Rock Mass, Engineering Geology, Vol. 33, pp. 11-30, (1993).
72.Zimmerman, R.W., and Main, I.G., “Hydromechanical Behaviour of Fractured Rocks, Mechanics of Fluid-Saturated Rocks, pp. 361-419 (2004).
73.Zimmerman, R.W., et al., “A Numerical Dual-porosity Model with Semi-analytical Treatment of Fracture Matrix Flow,Water Resource. Research, Vol.29, No.7, pp.2127-2137(1993).
74.中興顧問社,「蘭嶼放射性待處理物料儲存場地下水調查及地質調查工作報告」放射性待處理物料管理處,(1987)。
75.中興工程顧問公司,「低放射性廢棄物最終處置場可行性研究技術服務工作-地質評估報告,八號處置場」台灣電力公司,(2004)。
76.中興工程顧問公司,「低放射性廢棄物最終處置場可行性研究技術服務工作-八號處置場規劃設計報告」台灣電力公司,(2011)。
77.台灣電力公司,「低放處置設施功能模擬評估報告」,(2010)。
78.台灣電力公司核能廢料管理處委託原子能委員會核能廢料管理處,「我國用過核燃料長程處置計劃」,蘭嶼地質調查報告書,(1991)。
79.劉東山、蔡朝明,「放射性廢料管理」放射性待處理物料管理處,(1992)
80.任中興,「蘭嶼放射性廢料儲存場地下水質分析及流向分佈研究」,行政院原子能委員會放射性待處理物料管理處,(1990)。
81.行政院原子能委員會放射性待處理物料管理處,「放射性廢料設施及其附近地區地下水流及水質傳輸模擬之研究」,(1991)。
82.余進利,「破裂面網路地下水流與污染物傳輸之研究」,博士論文,國立成功大學水利及海洋工程學系,臺南(1992)。
83.李境和,「放射性廢棄物處置」pp.1-14,(1990)。
84.李振誥,「破碎岩體地下水流及污染傳輸模式之評選及應用於示範場址(一)-流動與傳輸特性及模式之研究」,原能會物管處委託研究報告,(1992)。
85.李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,pp.99-126 (2000) 。
86.李振誥、陳榮華、林碧山,「正交破裂面傳輸模式運用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究」,中國環境工程學刊,第五卷,第二期,第149-160頁(1995)。
87.李禎常,「破裂岩體之地下水流與污染物傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南(2011)。
88.李禎常,「破裂岩體地下水流與污染物平均傳輸統計分佈性質之研究」,碩士論文,國立成功大學資源工程學系,臺南(2004)。
89.周家慧,「礁溪地區溫泉人工補注之研究」,碩士論文,國立成功大學資源工程學系,臺南(2009)。
90.林宏奕,「破裂岩體優勢水流路徑之研究」,博士論文,國立成功大學資源工程學系,臺南(2009)。
91.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南(2000)。
92.林碧山,「破裂面幾何參數對地下水中質點傳輸之研究」,碩士論文,國立成功大學資源工程學系,臺南(1993)。
93.林碧山、李振誥、李禎常、林宏奕,「破裂岩體污染物傳輸性質之研究—以蘭嶼地區為例」,台灣水利,第53 卷,第1 期,第34-45頁(2005) 。
94.倪川田,「地下水污染物輸送有限元素模式之研究」台灣大學農業工程研究所碩士論文,(1988)。
95.徐年盛、郭振泰、蔡丁貴、劉格非、江崇榮、黃振鶯、張德鑫、張修齊,「放射性廢料設施及其附近地區地下水流及水質傳輸模擬之研究」,放射性核種遷移研討會論文集,p.21-42,(1994)。
96.徐年盛、郭振泰、朱文生、王曉中、江崇榮、張德鑫、吳呈懋、傅大章、高蔚明,「放射性廢料及附近地區地下水流水質傳輸模擬之研究(一) 」,行政院原子能委員會委託台大土木工程研究所建教合作計畫,(1991)。
97.偉志探勘股份有限公司,「蘭嶼儲存場第二期工程鑽探與現地試驗報告書」,(1988)。
98.郭明錦、江崇榮、黃振鶯,「放射性廢料設施附近地下水示蹤/抽水試驗和含水層特性描述之研究」,放射性待處理物料管理處,(1992)、(1993)。
99.陳榮華,「岩體破裂面統計特性分析與污染物傳輸之研究」,成功大學資源工程研究所碩士論文,(1994)。
100.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南(2001)。
101.黃崇琅、李振誥,「應用雙孔隙模式於具膚表效應破裂含水層水力性質估計之研究」,第七屆大地工程學術研究討論會論文集,臺北,第 1113-1120 頁(1997)。
102.詹新甫、莊文星、黃鑑水,「蘭嶼地區儲存場放射性待處理物料處存地質環境調查」,(1985)。
103.鄒龍銀,「蘭嶼貯存場含水層傳輸參數之研究-延散係數及遲滯係數」,碩士論文,國立成功大學礦冶及材料科學研究所,臺南,(1993)。
104.肇基工程鑽採試驗有限公司,財團法人中興工程顧問社代辦行政院原子能委員會放射性待處理物料管理處,「蘭嶼放射性廢料貯存場地下水調查工作報告」,(1987)。
105.劉振宇、譚義績、劉文忠、王淑美、葉正霖、李煌隆、王銘農,「地化模式應用於地下水中放射性核種遷移之研究」,行政院原子能委員會八十二年度專題研究計劃成果發表會論文集,pp.207-253,(1993)。
106.劉烽收,「蘭嶼貯存場場區表層滲透性質空間分佈之研究」,成功大學資源工程研究所碩士論文,(1996)。
107.蔡惠峰、郭嘉真、梁興杰、葉弘德、李鏡和、陳文迫、林善文,「海水入侵對地下水流速率與核種傳輸之影響」,第九屆水利工程研討會論文集,pp.G203-G210,(1998)。
108.羅俊光,「放射性核種在地層中遷移之阻置因子審查技術」,原能會物管處委託研究報告,(1995)。
109.陳崇希,「地下水動力學原理-地下水溶質運移理論及模型」,地質出版社,(1986)。
110.黃修哲,「低放射性廢棄物處置場址溶質傳輸之研究-以蘭嶼處置場為例」,(2011)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top