( 您好!臺灣時間:2021/07/26 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Monitoring Groundwater Radon, Methane and Ethane as Earthquake Precursors Nearby Chishang Fault
指導教授(外文):Ming-Chin Kuo
外文關鍵詞:earthquake precursorsradonmethaneethanegroundwater
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0

The Chihshang Fault is the present-day plate suture between the Eurasian and the Philippine Sea plates and is one of the most active faults in eastern Taiwan. The Chishiang well (D1) in the Antung hot spring, which is located only about 3 km southeast of the Chihshang Fault, was selected in this study for the radon monitoring site. The Antung hot spring is situated in a brittle basaltic block surrounded by a ductile mudstone. We hypothesized that rock cracks were generated at a rate faster than the recharge rate of pore water and gas saturation developed preceding the earthquake. In-situ radon volatilization into the gas phase may explain the groundwater radon anomalous decrease precursory to earthquakes. To verify the mechanism of in-situ volatilization, we monitored groundwater-dissolved ethane in addition to radon and methane at well D1 in the Antung hot spring between July 2011 and April 2012. The mechanism of in-situ radon volatilization has been corroborated by the simultaneous concentration changes in groundwater-dissolved radon, methane, and ethane observed during the above time period.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 6
1-3 研究流程 7
第二章 文獻回顧 8
2-1 水文地球化學在地震前兆的應用 8
2-2 地下水水氡在地震前兆的應用 11
2-3 水文地球化學在地震前兆的監測案例 13
2-4 研究區域地質背景介紹 20
2-4-1 花東縱谷與池上斷層 20
2-4-2 安通溫泉區地質背景 22
2-4-3 研究區域地震背景介紹 26
2-5 安通溫泉區地下水水氡及甲烷濃度異常之地震前兆 31
第三章 研究方法 36
3-1 安通溫泉區地下水採樣方法 36
3-2 地下水水氡分析方法介紹 38
3-2-1 地下水水氡分析原理 38
3-2-2 地下水水氡實驗室品保品管 41
3-3 地下水溶解氣體甲烷、乙烷分析方法介紹 44
3-3-1 地下水溶解氣體甲烷及乙烷分析原理及操作設定 44
3-3-2 檢量線製作 46
3-3-3 地下水溶解氣體甲烷及乙烷實驗室測量流程 47
3-3-4 實驗室監測地下溶解氣體甲烷及乙烷之品保品管 50
第四章 結果與討論 52
第五章 結論與建議 59
5-1 結論 59
5-2 建議 60
參考文獻 61

(1)Angelier, J., Geodynamics of the Eurasia-Philippine Sea Plate boundary: Preface. Tectonophysics, 125, IX-X , 1986.
(2)Barsukov, V.L., Serebrennikov, V.S., Belyaev, A.A, Bakaldin, Y.A., and Aresnyeva, R.V., Some experience in unraveling geochemical earthquake precursors. Pure and Applied Geophysics 122, 157-163., 1984.
(3)Chen, K.H.,S. Toda, R.J. Rau, A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. J. Geophys. Res., 113, B02304,doi: 10.1029/2007JB005048, 2008.
(4)Clever, H. L., Krypton, Xenon and Radon - Gas Solubilities, Solubility Data Series 2, Pergamon Press, Oxford, UK, 1979.
(5)Freyer, K., Treutler, H.C., Dehnert, J. and Nestler, W., Sampling and measurement of Randon-222 in water. Journal of Environmental Radioactivity, 37, 3, 327-337, 1997.
(6)Hauksson, E., Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. Journal of Geophysical Research, 86, 10, 9397-9410, 1981.
(7)Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y., Ground-water radon anomaly before the Kobe earthquake in Japan. Science, 269, 5220, 60-61, 1995.
(8)Katz, D. L., Handbook of Natural Gas Engineering, McGraw Hill, New 158 York, 1959.
(9)Kuo, T., Lin, C., Chang, G., Fan, K., Cheng, W. and Lewis, C., Estimation of aseimic crustal-strain using radon repetitive radon precursors of the 2003 M 6.8, 2006 M 6.1, and 2008 M 5.0 earthquakes in eastern Taiwan. Nat Hazards, 53, 219-228, 2010a.
(10)Kuo, T., Cheng, W., Lin, C., Fan, K., Chang, G. and Yang, T., Simultaneous declines in radon and methane precursory to 2008 Mw 5.0 Antung earthquake: corroboration of in-situ volatilization. Nat Hazards, 54, 367-372, 2010b.
(11)Kuo, T., Application of recurrent radon precursor for forecasting local large and moderate earthquake. Earthquake Research and Analysis-Statistical Study, Observation and Planning, 161-178, 2012.
(12)Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C. and Jeng, F.S., Monitoring active fault creep as a tool in seismic hazard mitigation: insights from creepmeter study at Chihshang, Taiwan. Geoscience, 337, 13, 1200-1207, 2005.
(13)Nisith, K.D., Rakesh, K.B., Debasis, G., Prasanta, S. and Bikash, S., Anomalous fluctuation of radon, gamma dose and helium emanating from a thermal spring prior to an earthquake. Science, 89, 8, 1399-1404, 2005.
(14)Scholz, C.H., Sykes, L.R. and Aggarwal, Y.P., Earthquake prediction: A physical basis. Science 181, no.4102, 803-810, 1973.
(15)Senior, L.A. Radon-222 in the ground water of chester county, Pennsylvania. U.S.Department of the Interior, U.S Geological survey, water-resource investigations report, 1-79, 1998.
(16)Sugisaki, R., Ito, T., Nagamine, K. and Kawabe, I., Gas geochemical changes at mineral springs associated with the 1995 southern Hyogo earthquake (M = 7.2), Japan. Earth and Planetary Science Letters, 139, 239-249, 1996.
(17)Tsunomori, F. and Kuo, T., A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan. Radiation Measurements, 45, 139-142, 2010.
(18)Verma, M., Bansal, B.K., Review earthquake precursory studies in India:Scenario and future perspectives. Journal of Asian Earth Sciences, http://dx.doi.org/10.1016/j.jseaes.2012.04.003, 2012.
(19)Vivek Walia, Virk, H.S., Bajwa B.S., Radon precursory signals for some earthquake of magnitude)5 occurred in N-W Himalaya: an overview. Pure and Applied Geophysics 163, 711-721, 2006.
(20)Yu, S.B. and Kuo, L.C., Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217, 2001.
(28)楊燦堯、宋聖榮、陳正宏、劉聰桂,地震前兆之化學性監測。經濟部中央地質調查所,台灣之活斷層與地震災害研討會論文集,89-106 ,2002。
(29)鄭文菁,地震前兆地下水溶解氣現地揮發機制佐證 –2008年Mw 5.4安通地震氡與甲烷濃度異常下降,中華民國100年一月,國立成功大學,2011。
(30)顏宏元,地震前兆研究,2005年臺灣活動斷層與地震災害研討會論文集, 23-36,2005

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top