跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張評款
研究生(外文):Ping-KuanChang
論文名稱:TCO/p界面對矽薄膜太陽能電池之影響
論文名稱(外文):The Influence of TCO/p Interface on Silicon Thin Film Solar Cells Performances
指導教授:洪茂峰洪茂峰引用關係
指導教授(外文):Mau-Phon Houng
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:77
中文關鍵詞:p型氫化微晶矽層非晶矽本質層抗反射層短路電流矽薄膜太陽能電池
外文關鍵詞:P-μc-Si:H layerI-a-Si:H layerAnti-reflection layerShort-circuit currentSilicon thin-film solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
目前全世界太陽能電池市場中,結晶矽太陽能約佔百分之九十。薄膜太陽能電池被認為在未來擁有顯著的產量,因為其具有較佳的成本競爭優勢,足以達到每瓦小於一塊美金之低成本目標。矽是一種豐富的材料,因此,低成本之矽薄膜太陽能電池,有很好的發展機會並可以提升市場佔有率。然而,關於未來效率提升之問題將是矽薄膜太陽能電池發展急待解決的重要課題。
為了提升矽薄膜太陽能電池效率,我們使用多種技術,有效地改善薄膜太陽能電池之光性與電性。藉著於透明導電層與p型氫化非晶碳化矽層之間沉積一層p型氫化微晶矽層,提升非晶矽薄膜太陽能電池特性並改善表面能障之問題,結果顯示高效率太陽能電池可被實現,結合一層p型氫化微晶矽層於太陽能電池中,可提高開路電壓、短路電流與填充因子。然後,我們研究非晶矽本質層之沉積溫度與電極距離對於太陽能電池之影響進而提升短路電流與轉換效率,其證明非晶矽本質層之吸收係數可被提升並提供高短路電流,利用最佳參數可改善非晶矽太陽能電池之短路電流由16.06 mA/cm2提升至16.52 mA/cm2,至於轉換效率由10.61%提高至10.86%。
除此之外,我們製作抗反射層並應用於堆疊式(a-Si:H/μc-Si:H)太陽能電池中,利用電漿輔助化學氣相沉積系統使用四氟化碳與氧氣之混合氣體產生多孔性抗反射層於玻璃基板上,具有抗反射層之堆疊式太陽能電池因提升光穿透性而使得短路電流由11.16 mA/cm2增加至11.45 mA/cm2,其增加0.29 mA/cm2,同時,太陽能之轉換效率從11.15%提升至11.55%。最後,我們將之前所研究之GZO/p-μc-Si:H結構、高吸收特性之非晶矽本質層與抗反射層應用於堆疊太陽能電池,然而,於實驗中得知,堆疊太陽能電池為了電流匹配,其Jsc_top必須提升至12.9 mA/cm2。有鑑於光電流提升之問題,故當沉積非晶矽本質層時,藉著高沉積溫度與高電極距離來提升Jsc_top,在輸入功率Pin = 100 mW/cm2及最佳結構與沉積條件下,獲得最佳轉換效率為13.17% (Voc = 1366 mV、Jsc = 13.1 mA/cm2與FF = 0.736)。

For current status of global solar energy, the photovoltaic world market is dominated by crystalline silicon solar cells which account for nearly 90% of world PV cell and module production. Thin film solar cells are believed to be candidates for significant production volume in the future because of their potential to reach the very low cost target of 〈US$ 1/watt. Silicon is an abundant material. Thus, low cost silicon thin-film solar cells have a good chance of gaining a significant market share. However, a significant increase in efficiency improvement is a crucial and key task for silicon thin film solar cells in the near future.
In order to improve the efficiency, we use several technologies to effectively improve the optical properties and electrical performance for the thin film solar cells. By inserting a thin p-type hydrogenated microcrystalline silicon (p-μc-Si:H) layer between transparent conductive oxide (TCO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) layer, the photovoltaic performances of amorphous silicon solar cells can be improved due to reduction of the surface potential barrier. The results show that higher efficiency can be produced by incorporating the p-μc-Si:H layer into the solar cell so as to improve the open-circuit voltage (Voc), short-circuit current density (Jsc) and fill factor (FF). Besides, we study the effects of deposition temperatures and electrode distances in the i-a-Si:H layer of a-Si:H solar cells with regard to enhanced the Jsc and thereby conversion efficiency. It is demonstrated that the absorption coefficient in an i-a-Si:H layer can be increased to provide higher Jsc under fixed thickness. Results show that the optimized parameters improve the Jsc of a-Si:H solar cells from 16.06 to 16.52 mA/cm2, yielding an excellent conversion efficiency of 10.86%.
Furthermore, an anti-reflection (AR) layer has been fabricated and applied in micromorph tandem (a-Si:H/μc-Si:H) solar cells. The porous AR layers are produced on glass substrates by plasma enhanced chemical vapor deposition using a CF4 and O2 gas mixture. The tandem solar cells with the AR layer show the increased Jsc of the solar cells due to increased light transmittance from air/glass interface. With the AR layer, the Jsc of the tandem cell increases by 0.29 mA/cm2. Meanwhile, the solar cell efficiency increases from 11.15% to 11.55% (3.5% in relative) which allows us to develop more efficient a-Si:H based solar cells. Finally, this study has reported the development of a-Si:H/μc-Si:H solar cells with GZO/p-μc-Si:H structure, high absorption coefficient of top i-a-Si:H layer and AR layer. However, the Jsc_top must be raised at least 12.9 mA/cm2 for current matching in the tandem cells. By using high deposition temperature and electrode distance parameters when depositing the i-a-Si:H layer, a best-result solar cell achieved an excellent conversion efficiency = 13.17%, Voc = 1366 mV, Jsc = 13.1 mA/cm2 and FF = 0.736.

Abstract (Chinese)………………..........……………………………………………I
Abstract (English)………………..........…………………………………………III
Acknowledgement……………..…....……………….........………….....…………VI
Contents………………………..…………………….........………….....………VIII
Figure Captions………………............……………………………………………XI
Table Captions………..………................………………………………….….…XV
Chapter 1 Introduction…......…...…………………………………………………1
1.1 Motive…………………………....……………………………………………1
1.2 Thesis Organization…………...................……………………………………4
Chapter 2 Background Theory…….....……………………………………………7
2.1 Solar Cell Principle……………....................…………………………………7
2.2 Solar Cell Type and Efficiency…………………..........………………………8
2.3 Solar Cell Characterization…………....……………………………………10
2.3.1 Current-Voltage Characteristics…………………………………....…..11
2.3.2 Differences in the J-V Characteristics of μc-Si:H and a-Si:H Solar
Cell.........................................................................................................14
2.3.3 Quantum Efficiency…………………..………………………………..15
Chapter 3 Experiments………........………………………………………………18
3.1 Deposition system………..……......…………………………………………18
3.1.1 Physical Vapor Deposition by Sputtering…….………………………..18
3.1.2 Plasma-Enhanced Chemical Vapor Deposition………………………19
3.2 Thin Film Analysis……..….…………………………………………………21
3.2.1 Scanning Electron Microscope…………...…………………………..22
3.2.2 Atomic Force Microscope…………………………………………..22
3.2.3 Spectroscopic Ellipsometer…...……..………………………………23
3.2.4 Ultraviolet and Visible Spectrophotometer…………….…………..23
3.3 Solar Cell Device Measurement…….......................…………………………23
3.4 Fabrication of the Solar Cells………………...………………………………25
3.4.1 Improvement of AZO/p-a-SiC:H Contact by the P-μc-Si:H
Insertion Layer……………………………..……...…………………..25
3.4.2 A-Si:H Solar Cells with the GZO/p-μc-Si:H Structure……………..26
3.4.3 High Absorption Coefficient Intrinsic Amorphous Silicon Layers..…28
3.4.4 Improvement of the Short-Circuit Current in Tandem Solar Cells by
an Anti-Reflection Layer…….……….………………………………..29
Chapter 4 Results and Discussion………...........…………………………………32
4.1 Improvement of AZO/p-a-SiC:H Contact by the P-μc-Si:H Insertion Layer...32
4.1.1 Surface Morphology of AZO Layer……..……...…………………..32
4.1.2 AZO/p-a-SiC:H and AZO/p-μc-Si:H Potential Barrier…..……..…..33
4.1.3 AZO/p-a-SiC:H and AZO/p-μc-Si:H in a-Si:H Solar Cells……..…34
4.1.4 I-V Parameters for the a-Si:H Solar Cells with Different H2/SiH4
Ratios of the P-μc-Si:H Layer………….……………….……………..35
4.1.5 I-V Parameters for the a-Si:H Solar Cells with Different Thicknesses
of the P-μc-Si:H Layer………………………………….……………..37
4.1.6 Summary………………………………………………………..….…38
4.2 A-Si:H Solar Cells with the SnO2/GZO/p-μc-Si:H Structure……………..…39
4.2.1 Optical Properties of Glass/SnO2 and Glass/SnO2/GZO Films…...…..39
4.2.2 I-V Parameters for the a-Si:H Solar Cells with Different Thicknesses
of the P-μc-Si:H Layer……………………………….……………..40
4.2.3 I-V Parameters for the a-Si:H Solar Cells with Different B2H6/SiH4
of the P-μc-Si:H Layer………………………….……………………..41
4.2.4 I-V Parameters for the a-Si:H Solar Cells with Different H2/SiH4 of
the P-μc-Si:H Layer…………………………………….……………..42
4.2.5 I-V Parameters for the a-Si:H Solar Cells with Different Structures…44
4.2.6 Summary………………………………………………………..….…45
4.3 High Absorption Coefficient Intrinsic Amorphous Silicon Layers…...…..…46
4.3.1 Optical and Material Properties of the I-a-Si:H Layers.…………..…..46
4.3.2 I-V Parameters for the a-Si:H Solar Cells with Different Deposition
Temperatures of the I-a-Si:H Layers…………………….…………..49
4.3.3 I-V Parameters for the a-Si:H Solar Cells with Different Electrode
Distances of the I-a-Si:H Layers………………..……….…………..51
4.3.4 I-V Parameters for the a-Si:H Solar Cells with High Deposition
Temperature and Electrode Distance of the I-a-Si:H Layers...……..53
4.3.5 Summary………………………………………………………..….…54
4.4 Anti-Reflection Layers………..…………………………….........………..…54
4.4.1 Optical and Material Properties of the AR Layer.............................…..54
4.4.2 I-V Parameters for the Tandem Solar Cells with AR Layers…..…..57
4.4.3 Summary………………………………………………………..….…59
4.5 Tandem Solar Cells with High Absorption Coefficient Intrinsic Amorphous
Silicon Layers and AR Layers.................…….……………………………60
Chapter 5 Conclusion………......................................…………….......…………63
References…………….........…………………........……………................………65
Publication List…………….................……………………………………………74

[1]S.Y. Myong, S.W. Kwon, M. Kondo, M. Konagai and K.S. Lim, “Development of a rapidly stabilized protocrystalline silicon multilayer solar cell, Semicond. Sci. Technol., vol. 21, pp. L11-L15, 2006.
[2]Y. Hamakawa, “Thirty years trajectory of amorphous and nanocrystalline silicon materials and their optoelectronic devices, J. Non-Cryst. Solids, vol. 352, pp. 863-867, 2006.
[3]Y. Hamakawa, Handbook of thin-film solar cells, Springer, pp. 1-2, 2003.
[4]莊嘉琛,太陽能工程-太陽能電池篇,全華書局出版,p. 4-75,1997。
[5]T. Markvart and L. Castaner, Handbook of solar cells: materials, manufacture and operation, Elsevier Science, p. 218, 2004.
[6]楊德仁,太陽能電池材料,五南圖書出版,pp. 1-3,2008。
[7]D.L. Staebler and C.R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett., vol. 31, pp. 292-294, 1977.
[8]D.L. Staebler, R.S. Crandall and R. Williams, “Stability of n-i-p amorphous silicon solar cells, Appl. Phys. Lett., vol. 39, pp. 733-735, 1981.
[9]M. Kolter, C. Beneking, D. Pavlov, T. Eickhoff, P. Hapke, S. Frohnhoff, H. Munder and H. Wagner, “Highly conductive microcrystalline n-layers for amorphous silicon stacked solar cells: preparation, properties, and device application, Proceedings of the 23th IEEE Photovoltaic Specialists Conference, pp. 1031-1036, 1993.
[10]H. Tanaka, N. Ishiguro, T. Miyashita, N. Yanagawa and M. Sadamoto, “Improvement of p-i buffer layer properties by hydrogen plasma treatment and its applications to pin a-Si:H solar cells, Proceedings of the 23th IEEE Photovoltaic Specialists Conference, pp. 811-815, 1993.
[11]L. Raniero, I. Ferreira. H. Aguas, S. Zhang, E. Fortunato and R. Martins, “Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique, Proceedings of the 31th IEEE Photovoltaic Specialists Conference, pp. 1548-1551, 2005.
[12]L. Raniero, S. Zhang, H. Aguas, I. Ferreira, R. Igreja, E. Fortunato and R. Martins, “Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz, Thin Solid Films, vol. 487, pp. 170-173, 2005.
[13]T. Kitamura, K. Honda, M. Nishimura, K. Sugita, K. Takemoto, Y. Yamaguchi, Y. Toyama, T. Yamamoto, S. Miyazaki, M. Eguchi, T. Harano, T. Sugano, N. Yoshida, A. Masuda, T. Itoh, T. Toyama, S. Nonomura, H. Okamoto and H. Matsumura, “Relation between pin a-Si:H solar-cell performances and intrinsic-layer properties prepared by Cat-CVD, Thin Solid Films, vol. 501, pp. 264-267, 2006.
[14]I.A. Yunaz, H. Nagashima, D. Hamashita, S. Miyajima and M. Konagai, “Wide-gap a-Si1-xCx:H solar cells with high light-induced stability for multijunction structure applications, Sol. Energy Mater. Sol. Cells, vol. 95, pp. 107-110, 2011.
[15]J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fay, E. Vallat-Sauvain, L. Feitknecht, J. Dubail1 and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells, Sol. Energy Mater. Sol. Cells, vol. 74, pp. 457-467, 2002.
[16]K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki and Y. Tawada, “A high efficiency thin film silicon solar cell and module, Sol. Energy, vol. 77, pp. 939-949, 2004.
[17]B. Rech, T. Repmann, S. Wieder, M. Ruske, U. Stephan, “A new concept for mass production of large area thin-film silicon solar cells on glass, Thin Solid Films, vol. 502, pp. 300-305, 2006.
[18]B. Rech, T. Repmann, M.N. van den Donker, M. Berginski, T. Kilper, J. Hupkes, S. Calnan, H. Stiebig and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology, Thin Solid Films, vol. 511-512, pp. 548-555, 2006.
[19]Y. Tawada, “Introduction of the a-SiC:H/a-Si:H heterojunction solar cell and update on thin film Si:H solar modules, Philosophical Magazine, vol. 89, pp. 2677-2685, 2009.
[20]M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and Rommel Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells, Prog. Photovolt: Res. Appl., vol. 7, pp. 311-316, 1999.
[21]O. Lundberg, M. Bodegard and L. Stolt, “Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells, Thin Solid Films, vol. 431-432, pp. 26-30, 2003.
[22]J. Palm, V. Probst, F.H. Karg, “Second generation CIS solar modules, Sol. Energy, Vol. 77, pp. 757-765, 2004.
[23]N. Romeo, A. Bosio and A. Romeo, “An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules, Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 2-7, 2010.
[24]W. Ma, S. Aoyama, H. Okamoto and Y. Hamakawa, “A study of interface properties in a-Si solar cells with μc-Si(C), Sol. Energy Mater. Sol. Cells, vol. 41/42, pp. 453-463, 1996.
[25]M. Kubon, E. Boehmer, F. Siebke, B. Rech, C. Beneking and H. Wagner, “Solution of the ZnO/p contact problem in a-Si:H solar cells, Sol. Energy Mater. Sol. Cells, vol. 41/42, pp. 485-492, 1996.
[26]J.E. Lee, J.W. Chung, J.C. Lee, J.S. Cho, Y.K. Kim, J. Yi, D.H. Kim, J. Song and K.H. Yoon, “The role of p-type buffer layers between ZnO:Al and p a-SiC:H for improving fill factor and Voc of a-Si:H solar cells, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 717-720, 2009.
[27]L.L. Kazmerski, D. Gwinner and A. Hicks, “Best research-cell efficiencies, 2009.
[28]P. Lechner, R. Geyer, H. Schade, B. Rech and J. Müller, “Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, pp. 861-864, 2000.
[29]T. Brammer and H. Stiebig, “Characterization of microcrystalline silicon thin-film solar cells, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp. 1274-1277, 2002.
[30]T. Wittchen, H.C. Holstenberg, D. Hunerhoff, J.M. Zhang and J. Metzdorf, “Solar cell calibration and characterization: Simplified DSR apparatus, Proceedings of the 20th IEEE Photovoltaic Specialists Conference, pp. 1251-1257, 1988.
[31]J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method, Applied Optics, vol. 26, pp. 1701-1708, 1987.
[32]B. Chapman, Handbook of glow discharge processes: Sputtering and Plasma Etching, John Wiley & Sons, 1980.
[33]W. Luft and Y. S. Tsuo, “Handbook of hydrogenated amorphous silicon alloy deposition processes, Applied Physics Series. Marcel Dekker, Inc., 1993.
[34]G. Bruno, P. Capezzuto and A. Madam, “Plasma deposition of amorphous silicon-basel materials, Plasma-Materials Interactions. Academic Press, Boston, 1995.
[35]J. Perrin, O. Leroy and M.C. Bordage, “Cross-sections, rate constants and transport coefficients in silane plasma, Contrib. to Plasma Phys., vol. 36, pp. 3-49, 1996.
[36]S. Fernandez and F.B. Naranjo, “Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 157-163, 2010.
[37]I. Schonbachler, S. Benagli, C. Bucher, A. Shah, J. Ballutaud and A. Buchel, “Role of i layer deposition parameters on the Voc and FF of an a-Si:H solar cell deposited by PECVD at 27.13 MHz, Thin Solid Films, vol. 451-452, pp. 250-254, 2004.
[38]P.K. Song, M. Watanabe, M. Kon, A. Mitsui and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering, Thin Solid Films, vol. 411, pp. 82-86, 2002.
[39]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature, Thin Solid Films, vol. 427, pp. 401-405, 2003.
[40]T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto and T. Yamamoto, “Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge, Surf. & Coat. Tech., vol. 202, pp. 973-976, 2007.
[41]F. Smole, M. Topic and J. Furlan, “Analysis of TCO/p(a-Si:C:H) heterojunction and its influence on p-i-n a-Si:H solar cell performance, J. Non-Cryst. Solids, vol. 194, pp. 312-318, 1996.
[42]J.C. Lee, V. Dutta, J. Yoo, J. Yi, J. Song and K.H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO:Al front transparent conduction oxide, Superlattices and Microstructures, vol. 42, pp. 369-374, 2007.
[43]S.C. Saha, S. Ghosh and S. Ray, “Widegap a-Si:H films prepared at low substrate temperature, Sol. Energy Mater. Sol. Cells, vol. 45, pp. 115-126, 1997.
[44]H.Y. Kim, K.Y. Lee and J.Y. Lee, “The influence of hydrogen dilution ratio on the crystallization of hydrogenated amorphous silicon films prepared by plasma-enhanced chemical vapor deposition, Thin Solid Films, vol. 302, pp. 17-24, 1997.
[45]W.Y. Kim, H. Tasaki, M. Konagai and K. Takahashi, “Use of a carbon-alloyed graded- band-gap layer at the p/i interface to improve the photocharacteristics of amorphous silicon alloyed p-i-n solar cells prepared by photochemical vapor deposition, Appl. Phys. Lett., vol. 61, pp. 3071-3076, 1987.
[46]H.C. Weller, R.H. Mauch and G.H. Bauer, “Novel type of ZnO studied in combination with 1.5eV a-SiGe:H pin diodes, Proceedings of the 22th IEEE Photovoltaic Specialists Conference, pp. 1290-1295, 1991.
[47]R. Das, T. Jana and S. Ray, “Degradation studies of transparent conducting oxide: a substrate for microcrystalline silicon thin film solar cells, Sol. Energy Mater. Sol. Cells, vol. 86, pp. 207-216, 2005.
[48]R.J. Koval, C. Chen, G.M. Ferreira, A.S. Ferlauto, J.M. Pearce, P.I. Rovira, C.R. Wronski and R.W. Collins, “Maximization of the open circuit voltage for hydrogenated amorphous silicon n-i-p solar cells by incorporation of protocrystalline silicon p-type layers, Appl. Phys. Lett., vol. 81, pp. 1258-1260, 2002.
[49]V. Vlahos, J. Deng, J.M. Pearce, R.J. Koval, G.M. Ferreira, R.W. Collins and C.R. Wronski, “Recombination n-i-p (substrate) a-Si:H solar cells with silicon carbide and protocrystalline p-layers, Mat. Res. Soc. Symp. Proc., vol. 762, pp. A7.2.1-A7.2.6, 2003.
[50]R. Platz, C. Hof, D. Fischer, J. Meier and A. Shah, “High-Ts amorphous top cells for increased top cell currents in micromorph tandem cells, Sol. Energy Mater. Sol. Cells, vol. 53, pp. 1-13, 1998.
[51]R. Platz, C. Hof, S. Wieder, B. Rech, D. Fischer, A. Shah, A. Payne and S. Wagner, “Comparison of VHF, RF and DC Plasma Excitation for a-Si:H deposition with hydrogen dilution, Mat. Res. Soc. Symp. Proc., vol. 507, pp. 565-571, 1998.
[52]T. Kitamura, K. Honda, M. Nishimura, K. Sugita, K. Takemoto, Y. Yamaguchi, Y. Toyama, T. Yamamoto, S. Miyazaki, M. Eguchi, T. Harano, T. Sugano, N. Yoshida, A. Masuda, T. Itoh, T. Toyama, S. Nonomura, H. Okamoto and H. Matsumura, “Relation between pin a-Si:H solar-cell performances and intrinsic-layer properties prepared by Cat-CVD, Thin Solid Films, vol. 501, pp. 264-267, 2006.
[53]M.Y. Versavel and J.A. Haber, “Lead antimony sulfides as potential solar absorbers for thin film solar cells, Thin Solid Films, vol. 515, pp. 5767-5770, 2007.
[54]S.G. Yoon, W.J. Park, H. Kim, S.W. Kim and D.H. Yoon, “Characterization of low refractive index SiOCF:H films designed to enhance the efficiency of light emission, J. Electroceram., vol. 16, pp. 469-472, 2006.
[55]C. Ballif, J. Dicker, D. Borchert and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modeling of yearly energy yield gain, Sol. Energy Mater. Sol. Cells, vol. 82, pp. 331-344, 2004.
[56]J.Y. Chen and K.W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 629-633, 2010.
[57]Y.M. Song, J.H. Jang, J.C. Lee, E.K. Kang, Y.T. Lee,“Disordered submicron structures integrated on glass substrate for broadband absorption enhancement of thin-film solar cells, Sol. Energy Mater. Sol. Cells, vol. 101, pp. 73-78, 2012.
[58]A. Jonsson, A. Roos and E.K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 992-997, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top