|
[1]S.Y. Myong, S.W. Kwon, M. Kondo, M. Konagai and K.S. Lim, “Development of a rapidly stabilized protocrystalline silicon multilayer solar cell, Semicond. Sci. Technol., vol. 21, pp. L11-L15, 2006. [2]Y. Hamakawa, “Thirty years trajectory of amorphous and nanocrystalline silicon materials and their optoelectronic devices, J. Non-Cryst. Solids, vol. 352, pp. 863-867, 2006. [3]Y. Hamakawa, Handbook of thin-film solar cells, Springer, pp. 1-2, 2003. [4]莊嘉琛,太陽能工程-太陽能電池篇,全華書局出版,p. 4-75,1997。 [5]T. Markvart and L. Castaner, Handbook of solar cells: materials, manufacture and operation, Elsevier Science, p. 218, 2004. [6]楊德仁,太陽能電池材料,五南圖書出版,pp. 1-3,2008。 [7]D.L. Staebler and C.R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett., vol. 31, pp. 292-294, 1977. [8]D.L. Staebler, R.S. Crandall and R. Williams, “Stability of n-i-p amorphous silicon solar cells, Appl. Phys. Lett., vol. 39, pp. 733-735, 1981. [9]M. Kolter, C. Beneking, D. Pavlov, T. Eickhoff, P. Hapke, S. Frohnhoff, H. Munder and H. Wagner, “Highly conductive microcrystalline n-layers for amorphous silicon stacked solar cells: preparation, properties, and device application, Proceedings of the 23th IEEE Photovoltaic Specialists Conference, pp. 1031-1036, 1993. [10]H. Tanaka, N. Ishiguro, T. Miyashita, N. Yanagawa and M. Sadamoto, “Improvement of p-i buffer layer properties by hydrogen plasma treatment and its applications to pin a-Si:H solar cells, Proceedings of the 23th IEEE Photovoltaic Specialists Conference, pp. 811-815, 1993. [11]L. Raniero, I. Ferreira. H. Aguas, S. Zhang, E. Fortunato and R. Martins, “Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique, Proceedings of the 31th IEEE Photovoltaic Specialists Conference, pp. 1548-1551, 2005. [12]L. Raniero, S. Zhang, H. Aguas, I. Ferreira, R. Igreja, E. Fortunato and R. Martins, “Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz, Thin Solid Films, vol. 487, pp. 170-173, 2005. [13]T. Kitamura, K. Honda, M. Nishimura, K. Sugita, K. Takemoto, Y. Yamaguchi, Y. Toyama, T. Yamamoto, S. Miyazaki, M. Eguchi, T. Harano, T. Sugano, N. Yoshida, A. Masuda, T. Itoh, T. Toyama, S. Nonomura, H. Okamoto and H. Matsumura, “Relation between pin a-Si:H solar-cell performances and intrinsic-layer properties prepared by Cat-CVD, Thin Solid Films, vol. 501, pp. 264-267, 2006. [14]I.A. Yunaz, H. Nagashima, D. Hamashita, S. Miyajima and M. Konagai, “Wide-gap a-Si1-xCx:H solar cells with high light-induced stability for multijunction structure applications, Sol. Energy Mater. Sol. Cells, vol. 95, pp. 107-110, 2011. [15]J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fay, E. Vallat-Sauvain, L. Feitknecht, J. Dubail1 and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells, Sol. Energy Mater. Sol. Cells, vol. 74, pp. 457-467, 2002. [16]K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki and Y. Tawada, “A high efficiency thin film silicon solar cell and module, Sol. Energy, vol. 77, pp. 939-949, 2004. [17]B. Rech, T. Repmann, S. Wieder, M. Ruske, U. Stephan, “A new concept for mass production of large area thin-film silicon solar cells on glass, Thin Solid Films, vol. 502, pp. 300-305, 2006. [18]B. Rech, T. Repmann, M.N. van den Donker, M. Berginski, T. Kilper, J. Hupkes, S. Calnan, H. Stiebig and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology, Thin Solid Films, vol. 511-512, pp. 548-555, 2006. [19]Y. Tawada, “Introduction of the a-SiC:H/a-Si:H heterojunction solar cell and update on thin film Si:H solar modules, Philosophical Magazine, vol. 89, pp. 2677-2685, 2009. [20]M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and Rommel Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells, Prog. Photovolt: Res. Appl., vol. 7, pp. 311-316, 1999. [21]O. Lundberg, M. Bodegard and L. Stolt, “Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells, Thin Solid Films, vol. 431-432, pp. 26-30, 2003. [22]J. Palm, V. Probst, F.H. Karg, “Second generation CIS solar modules, Sol. Energy, Vol. 77, pp. 757-765, 2004. [23]N. Romeo, A. Bosio and A. Romeo, “An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules, Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 2-7, 2010. [24]W. Ma, S. Aoyama, H. Okamoto and Y. Hamakawa, “A study of interface properties in a-Si solar cells with μc-Si(C), Sol. Energy Mater. Sol. Cells, vol. 41/42, pp. 453-463, 1996. [25]M. Kubon, E. Boehmer, F. Siebke, B. Rech, C. Beneking and H. Wagner, “Solution of the ZnO/p contact problem in a-Si:H solar cells, Sol. Energy Mater. Sol. Cells, vol. 41/42, pp. 485-492, 1996. [26]J.E. Lee, J.W. Chung, J.C. Lee, J.S. Cho, Y.K. Kim, J. Yi, D.H. Kim, J. Song and K.H. Yoon, “The role of p-type buffer layers between ZnO:Al and p a-SiC:H for improving fill factor and Voc of a-Si:H solar cells, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 717-720, 2009. [27]L.L. Kazmerski, D. Gwinner and A. Hicks, “Best research-cell efficiencies, 2009. [28]P. Lechner, R. Geyer, H. Schade, B. Rech and J. Müller, “Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, pp. 861-864, 2000. [29]T. Brammer and H. Stiebig, “Characterization of microcrystalline silicon thin-film solar cells, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp. 1274-1277, 2002. [30]T. Wittchen, H.C. Holstenberg, D. Hunerhoff, J.M. Zhang and J. Metzdorf, “Solar cell calibration and characterization: Simplified DSR apparatus, Proceedings of the 20th IEEE Photovoltaic Specialists Conference, pp. 1251-1257, 1988. [31]J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method, Applied Optics, vol. 26, pp. 1701-1708, 1987. [32]B. Chapman, Handbook of glow discharge processes: Sputtering and Plasma Etching, John Wiley & Sons, 1980. [33]W. Luft and Y. S. Tsuo, “Handbook of hydrogenated amorphous silicon alloy deposition processes, Applied Physics Series. Marcel Dekker, Inc., 1993. [34]G. Bruno, P. Capezzuto and A. Madam, “Plasma deposition of amorphous silicon-basel materials, Plasma-Materials Interactions. Academic Press, Boston, 1995. [35]J. Perrin, O. Leroy and M.C. Bordage, “Cross-sections, rate constants and transport coefficients in silane plasma, Contrib. to Plasma Phys., vol. 36, pp. 3-49, 1996. [36]S. Fernandez and F.B. Naranjo, “Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 157-163, 2010. [37]I. Schonbachler, S. Benagli, C. Bucher, A. Shah, J. Ballutaud and A. Buchel, “Role of i layer deposition parameters on the Voc and FF of an a-Si:H solar cell deposited by PECVD at 27.13 MHz, Thin Solid Films, vol. 451-452, pp. 250-254, 2004. [38]P.K. Song, M. Watanabe, M. Kon, A. Mitsui and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering, Thin Solid Films, vol. 411, pp. 82-86, 2002. [39]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature, Thin Solid Films, vol. 427, pp. 401-405, 2003. [40]T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto and T. Yamamoto, “Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge, Surf. & Coat. Tech., vol. 202, pp. 973-976, 2007. [41]F. Smole, M. Topic and J. Furlan, “Analysis of TCO/p(a-Si:C:H) heterojunction and its influence on p-i-n a-Si:H solar cell performance, J. Non-Cryst. Solids, vol. 194, pp. 312-318, 1996. [42]J.C. Lee, V. Dutta, J. Yoo, J. Yi, J. Song and K.H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO:Al front transparent conduction oxide, Superlattices and Microstructures, vol. 42, pp. 369-374, 2007. [43]S.C. Saha, S. Ghosh and S. Ray, “Widegap a-Si:H films prepared at low substrate temperature, Sol. Energy Mater. Sol. Cells, vol. 45, pp. 115-126, 1997. [44]H.Y. Kim, K.Y. Lee and J.Y. Lee, “The influence of hydrogen dilution ratio on the crystallization of hydrogenated amorphous silicon films prepared by plasma-enhanced chemical vapor deposition, Thin Solid Films, vol. 302, pp. 17-24, 1997. [45]W.Y. Kim, H. Tasaki, M. Konagai and K. Takahashi, “Use of a carbon-alloyed graded- band-gap layer at the p/i interface to improve the photocharacteristics of amorphous silicon alloyed p-i-n solar cells prepared by photochemical vapor deposition, Appl. Phys. Lett., vol. 61, pp. 3071-3076, 1987. [46]H.C. Weller, R.H. Mauch and G.H. Bauer, “Novel type of ZnO studied in combination with 1.5eV a-SiGe:H pin diodes, Proceedings of the 22th IEEE Photovoltaic Specialists Conference, pp. 1290-1295, 1991. [47]R. Das, T. Jana and S. Ray, “Degradation studies of transparent conducting oxide: a substrate for microcrystalline silicon thin film solar cells, Sol. Energy Mater. Sol. Cells, vol. 86, pp. 207-216, 2005. [48]R.J. Koval, C. Chen, G.M. Ferreira, A.S. Ferlauto, J.M. Pearce, P.I. Rovira, C.R. Wronski and R.W. Collins, “Maximization of the open circuit voltage for hydrogenated amorphous silicon n-i-p solar cells by incorporation of protocrystalline silicon p-type layers, Appl. Phys. Lett., vol. 81, pp. 1258-1260, 2002. [49]V. Vlahos, J. Deng, J.M. Pearce, R.J. Koval, G.M. Ferreira, R.W. Collins and C.R. Wronski, “Recombination n-i-p (substrate) a-Si:H solar cells with silicon carbide and protocrystalline p-layers, Mat. Res. Soc. Symp. Proc., vol. 762, pp. A7.2.1-A7.2.6, 2003. [50]R. Platz, C. Hof, D. Fischer, J. Meier and A. Shah, “High-Ts amorphous top cells for increased top cell currents in micromorph tandem cells, Sol. Energy Mater. Sol. Cells, vol. 53, pp. 1-13, 1998. [51]R. Platz, C. Hof, S. Wieder, B. Rech, D. Fischer, A. Shah, A. Payne and S. Wagner, “Comparison of VHF, RF and DC Plasma Excitation for a-Si:H deposition with hydrogen dilution, Mat. Res. Soc. Symp. Proc., vol. 507, pp. 565-571, 1998. [52]T. Kitamura, K. Honda, M. Nishimura, K. Sugita, K. Takemoto, Y. Yamaguchi, Y. Toyama, T. Yamamoto, S. Miyazaki, M. Eguchi, T. Harano, T. Sugano, N. Yoshida, A. Masuda, T. Itoh, T. Toyama, S. Nonomura, H. Okamoto and H. Matsumura, “Relation between pin a-Si:H solar-cell performances and intrinsic-layer properties prepared by Cat-CVD, Thin Solid Films, vol. 501, pp. 264-267, 2006. [53]M.Y. Versavel and J.A. Haber, “Lead antimony sulfides as potential solar absorbers for thin film solar cells, Thin Solid Films, vol. 515, pp. 5767-5770, 2007. [54]S.G. Yoon, W.J. Park, H. Kim, S.W. Kim and D.H. Yoon, “Characterization of low refractive index SiOCF:H films designed to enhance the efficiency of light emission, J. Electroceram., vol. 16, pp. 469-472, 2006. [55]C. Ballif, J. Dicker, D. Borchert and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modeling of yearly energy yield gain, Sol. Energy Mater. Sol. Cells, vol. 82, pp. 331-344, 2004. [56]J.Y. Chen and K.W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 629-633, 2010. [57]Y.M. Song, J.H. Jang, J.C. Lee, E.K. Kang, Y.T. Lee,“Disordered submicron structures integrated on glass substrate for broadband absorption enhancement of thin-film solar cells, Sol. Energy Mater. Sol. Cells, vol. 101, pp. 73-78, 2012. [58]A. Jonsson, A. Roos and E.K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 992-997, 2010.
|