跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠宇
研究生(外文):Kuan-YuChen
論文名稱:量子位障厚度對氮化鎵系列發光二極體影響之研究
論文名稱(外文):Investigation of effects of quantum barrier thickness on GaN-based light-emitting diodes
指導教授:張守進張守進引用關係陳志方
指導教授(外文):Shoou-Jinn ChangShoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:63
中文關鍵詞:發光二極體氮化鎵位障
外文關鍵詞:LEDGaNbarrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功研製了不同條件的氮化鎵發光二極體。在本論文中,成長10對的氮化銦鎵/氮化鎵多重量子井時,我們保持量子井的厚度為3奈米,改變量子位障的厚度(分別為12奈米, 9奈米, 6奈米)。位障較厚的發光二極體有較大的順向偏壓和串聯電阻,這是因為載子的傳輸是受到能障厚度和能障高度所影響,能障越厚和能障越高都不利於載子的傳輸,我們發現位障較厚的發光二極體有能帶傾斜較嚴重的量子井、能障較高的位障以及能障較厚的位障。
此外,我們以電致發光來進行光特性的研究,發光起始波長和遮蔽現象導致的藍移是和量子侷限史塔克效應有高度相關的,LED I(位障厚度為12 奈米)、LED II(位障厚度為9奈米)、LED III(位障厚度為6奈米)的遮蔽現象導致的藍移分別是0.70奈米、0.29奈米、0.10奈米,從光輸出功率轉換而得的外部量子效率我們分成外部量子效率的峰值和效率下滑兩個部分進行討論。最後,我們計算了發光二極體的介面溫度,位障較厚的發光二極體有較高的介面溫度,這個結果主要是由插座轉換效率所主導,另一方面,串聯電阻也會貢獻一部分的焦耳熱到發光二極體的介面。

GaN-based light emitting diodes have been fabricated and investigated. In this study, the 10 periods of InGaN/GaN MQWs are grown by varying the thickness of the GaN barriers (12 nm, 9 nm, 6 nm), keeping the thickness of the In0.23Ga0.77N wells constant at 3 nm. The LED with thicker barriers is found to have higher forward voltage and series resistance. It is attributed to that the carrier transport depends on barrier thickness and barrier height. Thick barrier thickness and high barrier height are hard for carriers to transport. It is found that LED with thicker barrier thickness has severer band bending in wells, higher barrier height in barriers, and thicker barrier thickness in barriers.
In addition, the optical characteristics are investigated by electroluminescence (EL). The initial emission wavelength and blueshift of emission wavelength caused by screening effect is related to the quantum-confined Stark effect (QCSE). The blueshift of screening effect of LED I (barrier = 12 nm), LED II (barrier = 9 nm) and LED III (barrier = 6 nm) are 0.70 nm, 0.29 nm and 0.10 nm, respectively. External quantum efficiency (EQE), converted from light output power, is discussed by two parts, which are EQE peak and efficiency droop. Lastly, the junction temperatures of the LEDs are calculated. The LED with thicker barriers has higher junction temperature. The wall plug efficiency (WPE) dominates the junction temperature, and series resistance also contributes some Joule heat to the junction.
摘要 I
Abstract III
誌謝 V
Contents VI
Table Captions VIII
Figure Captions IX
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Organization of the thesis 4
References 5
Chapter 2. Experiments and theories 7
2.1 Process equipments and measurement instrument 7
2.1.1Metal organic chemical vapor deposition (MOCVD) 7
2.1.2 Inductively coupled plasma (ICP) 8
2.1.3 Electroluminescence (EL) 9
2.2 Polarization 10
2.2.1 Properties of wurtzite GaN 10
2.2.2 Spontaneous and piezoelectric polarization 11
2.2.3 Investigations of polarization effect on GaN LEDs 12
2.3 LED basic device parameters 15
2.3.1 Equivalent circuit model of LED 15
2.3.2 Quantum efficiency 16
2.3.3 Junction temperature 17
2.4 Device fabrication and experiments design 20
References 28
Chapter 3. The electrical and optical characteristics of GaN LEDs 32
3.1 Forward I-V characteristics 32
3.2 Electroluminescence 34
3.3 Blueshift caused by screening Effect 35
3.3.1 Current for screening effect 35
3.3.2 Blueshift caused by screening effect 36
3.4 Photoelectric conversion efficiency 36
3.4.1 Light output power 36
3.4.2 External quantum efficiency peak 37
3.4.3 Efficiency droop 39
References 48
Chapter 4. The Temperature-related characteristics of GaN LEDs 50
4.1 Introduction 50
4.2 The thermal effect on optical characteristics 51
4.2.1 Wavelength and temperature 51
4.2.2 Power and temperature 51
4.3 Junction temperature 52
References 59
Chapter 5. Conclusions and future works 60
5.1 Conclusions 60
5.2 Future works 62
References 63


Chapter 1
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm, Appl. Phys. Lett. 76, 22 (2000)
[2] H. Aktas, Z. F. Fan, S. N. Mmohammand, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors, Appl. Phys. Lett. Vol. 69,3872 (1996)
[3] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright Green InGaN Single- Quantum-Well-Structure Light-Emitting Diodes, Jpn. J. Appl. Phys. 34, L1332-L1335 (1995)
[4] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. George Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, Journal of Display Technology, Vol.3, No.2 (2007)
[5] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes, Appl. Phys. Lett. 91, 183507 (2007)
[6] S. J. Leem, Y. C. Shin, K. C. Kim, E. H. Kim, Y. M. Sung, Y. Moon, S. M. Hwang, T. G. Kim, “The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers, J. Cryst. Growth, 311, pp.103-106 (2008)
[7] X.Guo, E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates, Appl. Phys. Lett., 78, 3337 (2001)
[8] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes, Appl. Phys. Lett., 66, 1249 (1995)
[9] N. Duxbury, U. Bangert, and P. Dawson, E. J. Thrush, W. Van der Stricht, K. Jacobs, and I. Moerman, “Indium segregation in InGaN quantum-well structures, Appl. Phys. Lett., 76, 1600 (2000)
[10] D. J. Kim, Y. T. Moon, K. M. Song and S. J. Park, “Effect of Barrier Thickness on the Interface and Optical Properties of InGaN/GaN Multiple Quantum Wells, Jpn. J. Appl. Phys., 40, pp.3085-3088 (2001)
[11] M. C. Tsai, S. H. Yen, Y. C. Lu and Y. K. Kuo, “Numerical Study of Blue InGaN Light-Emitting Diodes With Varied Barrier Thicknesses
[12] Y. L. Li, Y. R. Huang, Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well lightemitting diodes with varying quantum well thickness, Appl. Phys. Lett., 91, 181113 (2007)

Chapter 2
[1] V. Selvamanickam *, H. G. Lee, Y. Li, X. Xiong, Y. Qiao, J. Reeves, Y. Xie, A. Knoll, K. Lenseth, “Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition, Physica C, 392–396, 859–862 (2003)
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes, Jpn. J. Appl. Phys., 35, pp. L74-L76 (1997)
[3] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador and H. Morkoc, “Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped field‐effect transistors, Appl. Phys. Lett., 69, 1229 (1996)
[4] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films, Jpn. J. Appl. Phys., 31, pp. L139-L141 (1992)
[5] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation, Jpn. J. Appl. Phys., 28, 12, L2112 (1989)
[6] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN, Appl. Phys. Lett., 15, 327 (1969)
[7] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of GaN using BCl3, Appl. Phys. Lett., 64, 887 (1994)
[8] E. Sillero, F. Calle, M. A . Sanchez-Garcia, “GaN reactive ion etching using SiCl4:Ar:SF6 Chemistry, J. Mater. Sci.-Mater. Electron., 16, 7 (2005)
[9] G. F. Mclane, L. Casas, S. J. Pearton, and C. R. Abernathy, “High etch rates of GaN with magnetron reactive ion etching in BCl3 plasmas, Appl. Phys. Lett., 66, 3328 (1995)
[10] A. T. Ping, I. Adesida, and M. Asif Khan, “Study of chemically assisted ion beam etching of GaN using HCl gas,Appl. Phys. Lett., 67, 1250 (1995)
[11] L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester, and S. D. Hersee, “Electron cyclotron resonance etching characteristics of GaN in SiCl4/Ar, Appl. Phys. Lett., 68, 367 (1996)
[12] D. S. Wuu, C. R. Chung and Y. H. Liu, R. H. Horng and S. H. Huang “Deep etch of GaP using high-density plasma for light-emitting diode applications, J. Vac. Sci. Technol. B, 20, 902 (2002)
[13] S. J. Pearton, C. R. Abernathy, F. Ren and J. R. Lothian, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy, J. Vac. Sci. Technol. A, 11, 1772 (1993)
[14] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, and R. F. Davis, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma, Appl. Phys. Lett., 71, 3631 (1997)
[15] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, “Inductively coupled plasma etching of GaN, Appl. Phys. Lett., 69, 1119 (1996)
[16] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications, J. Vac. Sci. Technol. B, 20, 3 (2002)
[17] H. Xu, “FABRICATION AND ELECTRICAL/OPTICAL CHARACTERIZATION OF BULK GAN-BASED SCHOTTKY DIODES, AUBURN UNIVERSITY (2009)
[18] C. Koughia, Safa Kasap, Peter Capper (2006), Springer Handbook of Electronic and Photonic Materials (1st edition), Springer
[19] H. Morkoc (2008), Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth (1st edition), Wiley-VCH
[20] S. Strite and H. Morkoc, “GaN, AIN, and InN: A review, J. Vac. Sci. Technol. B., 10, 4 (1992)
[21] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy, Appl. Phys. Lett., 68, 2541 (1996)
[22] V. Fiorentini, F. Bernardini, O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-Vnitride alloy heterostructures, Appl. Phys. Lett., 80, 7 (2002)
[23] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature, 406, 865 (2000)
[24] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction, Solid-State Electronics, 51, pp. 860-864 (2007)
[25] J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes, Appl. Phys. Lett., 92, 101113 (2008)
[26] Y. L. Li, Y. R. Huang, and Y. H. Lai, “Investigation of Efficiency Droop Behaviors of InGaN/GaN Multiple-Quantum-Well LEDs With Various Well Thicknesses, IEEE J. Sel. Top. Quantum Electron., 15, 4, 2009
[27] H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges, IEEE Trans. Electron Devices, 57, 1 (2010)
[28] E. F. Schubert, “LIGHT-EMITTING DIODES, Cambridge University Press
[29] Y. Xi and E. F. Schubert, “Junction temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, Appl. Phys. Lett., 85, 12 (2004)
[30] Y. J. Lee, C. J. Lee, C. H. Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes, IEEE J. Quantum Electron., 46, 10 (2010)
[31] W. B. Joyce and R. W. Dixon, “Thermal resistance of heterostructure lasers, J. Appl. Phys., 46, 2 (1975)

Chapter 3
[1] M. Leroux, N. Grandjean, and J. Massies, “Barrier-width dependence of group-III nitrides quantum-well transition energies, Phys. Rev. B, 60, 3 (1999)
[2] J. L. Sanchez-Rojas, J. A. Garrido, and E. Munoz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices, Phys. Rev. B, 61, 4 (2000)
[3] E. Kuokstis, J. W. Yang, G. Simin, M A. Khan, R. Gaska, M. S. Shur, “Two mechanism of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells, Appl. Phys. Lett., 80,6 (2002)
[4] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells, Appl. Phys. Lett., 73,3571 (1998)
[5] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction, Solid-State Electronics, 51, 860 (2007)
[6] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, Blue temperature-induced shift and band-tail emission in InGaN-based light sources, Appl. Phys. Lett., 71, 569 (1997)
[7] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett., 73, 1370 (1998)
[8] Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate, IEEE J. Sel. Top. Quantum Electron. 15, 4 (2009)
[9] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer, Appl. Phys. Lett., 97, 251114 (2010)
[10] S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency doop in InGaN/GaN multiple quantum well light-emitting diodes, Appl. Phys. Lett., 94, 231123 (2009)
[11] E. F. Schubert, “LIGHT-EMITTING DIODES, Cambridge University Press (2003)
[12] M. C. Tsai, S. H. Yen, Y. C. Lu, and Y. K. Kuo, “Numerical Study of Blue InGaN Light-Emitting Diodes With Varied Barrier Thicknesses, IEEE Photonics Technol. Lett., 23, 2 (2011)
[13] X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells, Appl. Phys. Lett., 93, 171113 (2008)
[14] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, “Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes, Appl. Phys. Lett., 96, 231101 (2010)

Chapter 4
[1] Y. J. Lee, C. J. Lee, C. H. Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes, IEEE J. Quantum Electron., 46, 10 (2010)
[2] Y. H. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett., 73, 1370 (1998)

Chapter 5
[1] C. H. Wang, S P. Chang, W. T. Chang, J. C Li, Y S. Lu, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells, Appl. Phys. Lett., 97, 181101 (2010)
[2] M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers, Appl. Phys. Lett., 98, 111114 (2011)
[3] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes, IEEE J. Quantum Electron., 38, 5 (2002)
[4] A. Di Carlo, F. Della Sala, P. Lugil, V. Fiorentini, and F. Bernardini, “Doping screening of polarization fields in nitride heterostructures, Appl. Phys. Lett., 76, 26 (2000)

電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊