跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施三雄
研究生(外文):San-SyongShih
論文名稱:利用共濺鍍系統研製ZITO薄膜電晶體及其應用
論文名稱(外文):Investigation of zinc indium tin oxide thin film transistors fabrication by co-sputtered system and their application
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:84
中文關鍵詞:薄膜電晶體氧化鋅銦錫深紫外光電晶體
外文關鍵詞:thin film transistorsamorphous zinc indium tin oxidedeep UV phototransistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們研製並探討不同絕緣層對氧化鋅銦錫(ZITO)薄膜電晶體之影響並創新應用於深紫外光電晶體。首先,我們應用非晶氧化鋅銦錫薄膜做為主動層與二氧化矽做為閘極介電層來製作薄膜電晶體,可以得到場效遷移率7.7 cm2/Vs,臨界電壓1 V,次臨界擺幅0.5 V,電流開關比105。此外,我們指出元素含量組成對元件電特性之影響,然後,改善電特性的確切來源,並最佳化鋅銦錫薄膜中,鋅,銦和錫組分的影響,以改善元件特性。
在實驗第二部分,我們證明非晶鋅銦錫薄膜電晶體與高介電常數五氧化二鉭製作在玻璃基板上。在室溫下沉積下得到臨界電壓0.75 V,電流開關比105,次臨界擺幅0.45 V,場效遷移率72.3 cm2/Vs。與不同的高介電常數與傳統的閘極介電層比較,其中發現我們可以達到高場效遷移率,低臨界電壓與操作電壓。這些結果可以歸咎於高介電常數可以使得閘極電容值上升。
在非晶鋅銦錫光電晶體部分,我們製作出可偵測深紫外光與近紫外光高介電係數五氧化二鉭/非晶氧化鋅銦錫光電晶體,在當閘極電壓為0 V,波長為250 nm紫外光照光下,量測電流-電壓從2.3×10-9 A 上升至7.97×10-5 A,在偏壓為0 V與250nm的光照下所量測到的光響應值為3.9 A/W,且在偏壓為0 V與380 nm的光照下所量測到的光響應值為2.13×10-4 A/W。當偏壓為0 V時,光敏感率達到2.3×105,其結果顯示非晶鋅銦錫薄膜電晶體與高介電常數五氧化二鉭運用偵測於紫外光時,有低的功率損耗與較高的光響應和拒斥比。

In this dissertation, amorphous zinc indium tin oxide (a-ZITO) thin film transistors (TFTs) with different kinds of dielectric layers were fabricated and analysis of deep UV phototransistor investigated.
First, we apply a-ZITO thin film as channel layer to the fabrication of TFT with SiO2 gate dielectric. it was found that the field-effect mobility were 7.7 cm2/Vs, threshold voltage of 1 V, subthreshold swing of 0.5 V/decade and Ion/Ioff of 105 for a-ZITO TFT with SiO2 gate dielectric. Additionally, we report the effect of cation composition on the device performance of a-ZITO TFTs was investigated. Then, the exact origin of the improvement of electrical characteristics, and optimize the effects of the In, Zn, and Sn fractions in ZITO thin films, in order to improve the performance of a device.
In the second part of our experiment, The fabrication of a-ZITO thin-film transistor with a Ta2O5 dielectric on a glass substrate was demonstrated. The room-temperature-deposited a-ZITO channel with Ta2O5 exhibits threshold voltage of 0.75 V, drain-source current on/off ratio of 105, subthreshold swing of 0.45 V/decade, and field-effect mobility of 72.3 cm2/Vs under a low operation voltage (i.e.,2V). Compared with various high k material and conventional gate dielectric, it was found that we can achieve higher mobility, low threshold voltage and operation voltage. These results could be contributed to the high k material for the increased higher gate capacitance.
On the part of a-ZITO phototransistor, A deep-UV and near-UV sensitive a-ZITO phototransistor with Ta2O5 gate dielectric was fabricated. It was also found that measured current increased from 2.3×10-9 A to 7.97×10-5 A as we illuminated the sample with λ= 250 nm UV light when VG was biased at 0 V. With an incident light wavelength of 250 nm and an applied gate bias of 0 V, it was found that measured responsivity of the device was 3.9 A/W. Then, with an incident light wavelength of 380 nm and an applied gate bias of 0 V, it was found that measured responsivity of the device was 2.13×10-4 A/W. It was also found that we could achieve the photosensitivity of 2.3×105 when the device was biased at 0 V. These results suggest that the a-ZITO thin film transistors have the low power consumption, high responsivity and rejection ratio when used in UV detection.

摘要 I
Abstract III
誌謝 V
Contents VI
Table Captions IX
Figure Captions X
Chapter 1. Introduction 1
1.1 Background of Thin Film Transistors 1
1.2 Overview of amorphous oxide semiconductor 2
1.3 Overview of High-κ Material 3
1.4 Overview of Ultraviolet phototransistors 4
1.5 Organization of Dissertation 5
Reference 8

Chapter 2. Fundamental of amorphous oxide semiconductor and phototransistor 13
2.1 Amorphous ZnO-based oxide semiconductor 13
2.1.1 Electronic structure of AOS 13
2.1.2 Electronic properties of a-ZITO 14
2.2 ZnO-based phototransistor 14
2.3 Important Parameters 16
2.3.1 Field-Effect Mobility 16
2.3.2 Threshold Voltage (VT) 17
2.3.3 On/off current Ratio (Ion/off) 17
2.3.4 Subthreshold Swing (S.S) 17
2.3.5 Responsivity 18
2.4 Experimental apparatus 19
2.4.1 Radio-frequency sputtering system 19
2.4.2 X-ray Diffraction Analysis (XRD) 19
2.4.3 Atomic force microscopy (AFM) 19
2.4.4 Measurement Systems 20
Reference 26

Chapter 3. ZITO TFTs with SiO2 dielectric layers 27
3.1 Introduction 27
3.2 Fabrication of a-ZITO TFTs with SiO2 dielectric layers 28
3.3 The physical analysis of a-ZITO and SiO2 / a-ZITO thin film 29
3.4 The parameter optimized of a-ZITO thin film transistors. 30
3.4.1 Vary ZnO power 30
3.4.2 Vary oxygen flow rate 32
3.4.3 Vary Chemical composition 34
Reference 51

Chapter 4. ZITO TFTs with Ta2O5 dielectric layers 54
4.1 Introduction 54
4.2 Fabrication of a-ZITO TFTs with Ta2O5 dielectric layers 55
4.3 The physical analysis of Ta2O5 / a-ZITO thin film 56
4.4 Current-voltage (I-V) characteristics of a-ZITO TFTs with Ta2O5 dielectric layers 57
Reference 63

Chapter 5. A Ta2O5/Zinc-Indium-Tin-Oxide Thin Film Transistor Solar Blind and Visible Blind Dual Band Phototransistor 66
5.1 Introduction 66
5.2 Fabricated of a deep UV Ta2O5/a-ZITO phototransistor 67
5.3 A Ta2O5/ZITO TFT solar-blind and visible-blind dual band phototransistor under illumination 69
Reference 77

Chapter 6. Conclusion and future work 80
6.1 Conclusion 80
6.2 Future work 82

Chapter 1
[1]P. K. Weifer, H. Borkan, G. Sadasiv, L. Meray-Horvath, and F. V. Shallcross, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements, Proc. IEEE., vol. 51, pp. 851, 1964.
[2]J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition, Appl. Phys. Lett., vol. 94, no. 142107, 2009.
[3]Y. J. Cho, J. H. Shin, S. M. Bobade, Y. B. Kim, and D. K. Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors, Thin Solid Films, vol. 517, pp. 4115-4118, 2009.
[4]J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator, Appl. Phys. Lett., vol. 93, no. 242111, 2008.
[5]H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method, Jpn. J. Appl. Phys., vol. 47, No. 1, 87–90 2008.
[6]Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, and C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors, J. Vac. Sci. Technol. B., vol. 26, pp. 1472-1476, 2008.
[7]C. Li, Y. Li, Y. Wu, B. S. Ong, and R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film, J. Appl. Phys., vol. 102, no. 076101, 2007.
[8]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, pp. 1269-1271, 2003.
[9]N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric, IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
[10]W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric, IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
[11]D. A. Mourey, D. A. Zhao, and T. N. Jackson, “Selfaligned-gate ZnO TFT circuits, IEEE Electron Dev. Lett., vol. 31, pp. 326-328, 2010.
[12]H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs, Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
[13]K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors, IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
[14]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-filmtransistors with transparent amorphous zinc indium tin oxide channel layer, J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
[15]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations, J. Appl. Phys., vol. 89, pp. 5243-7275, 2001.
[16]S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, A complementary method to determine the effective flow resistivity of flat ground states, J. Korean Phys. Soc., vol. 43, pp. 868-874, 2003.
[17]L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Elec. Dev. Lett., vol. 21, pp. 181-183, 2000.
[18]B. H. Lee, L. Kang, R. Nieh, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing, Appl. Phys. Lett., vol. 76, pp. 1926-1928, 2000.
[19]M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, “Interdiffusion studies for HfSi[sub x]O[sub y] and ZrSi[sub x]O[sub y] on Si, J. Appl. Phys., vol. 92, pp. 3540-3550, 2002.
[20]K. S. Hwang, Y. S. Jeon, S. B. Kim, C. K. Kim and J. S. Oh, “Ca-Doped ZrO 2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor, J. Korean Phys Soc., vol. 43, pp. 754, 2003.
[21]H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, “Thermal stability of (HfO[sub2])[subx] (Al[sub2]O[sub3])[sub1-x] on Si, Appl. Phys. Lett., vol. 81, pp. 3618-3620, 2002.
[22]H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering, Vacuum, vol. 83, pp. 1311-1316, 2009.
[23]Campbell J C 1985 Semiconductors and Semimetal vol. 22D, ed W T Tsang (New York: Academic)
[24]A. Star, Y. Lu, K. Bradley, and G. Gruner, “Nanotube optoelectronic memory devices, Nano Lett., vol. 4, pp.1587, 2004.
[25]Y. Huang, and R. I. Hornsey, “Nitride-based LEDs with p-InGaN capping layer, IEEE Trans. Elec. Dev., vol. 50, pp. 2570, 2003.
[26]G. Chaji, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging, Appl. Phys. Lett., vol. 93, pp. 203504, 2008.
[27]N. M. Johnson, and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica, Appl. Phys. Lett., vol. 45, pp. 1102, 1984.
[28]Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors, Appl. Phys. Lett., vol. 56 pp. 650, 1990.
[29]C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors, vol. 9, pp. 6504–6529, 2009.

Chapter 2
[1]H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids, vol. 352, pp. 851–858, 2006.
[2]H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, J. Non-Cryst. Solids, vol. 200, pp. 165–169, 1996.
[3]M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor, Phil. Mag. B., vol. 81, pp. 501–515, 2001.
[4]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer,“ Nature, vol. 432, pp. 488-492, 2004.
[5]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155, no. 6, pp. H390-H395, 2008.
[6]D. A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003.

Chapter 3
[1]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, pp. 1269, 2003.
[2]N. C. Su, S. J. Wang, and A. Chin, High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric, IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
[3]W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High-kappa HfLaO Hybrid Gate Dielectric, IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
[4]D. A. Mourey, D. A. Zhao, and T. N. Jackson, Self-Aligned-Gate ZnO TFT Circuits, IEEE Elec. Dev. Lett., vol. 31, pp. 326-328, 2010.
[5]H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Amorphous oxide channel TFTs, Thin Solid Films, vol. 516 pp. 1516–1522, 2008.
[6]K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors, IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
[7]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer, Appl. Phys Lett., vol. 40, 2007.
[8]J. Liu, D. B. Buchholz, R. P. H. Chang, A. Facchetti, and T. J. Marks, High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel, Adv. Mater., vol. 22, pp. 2333–2337, 2010.
[9]K. J. Chen, F. Y. Hung, S. J. Chang, S. P. Chang, Y. C. Mai, and Z. S. Hu, A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system, J. Alloy. and Compd., vol. 509, pp. 3667–3671, 2011.
[10]K. J. Saji, and M. K. Jayaraj, Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films, Phys. Stat. Sol. (a)., vol. 205, no. 7, pp. 1625–1630, 2008.
[11]M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors, Appl. Phys. Lett., vol. 95, pp. 173508 (3 pages), 2009.
[12]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155 no. 6, pp. H390-H395, 2008.
[13]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer, J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
[14]M. G. Kim, H. S. Kim, Y. G. Ha, J. He, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors, J. Amer. Chem. Soc, vol. 132, pp. 10352-10364, 2010.
[15]B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Kim, D. H. Lee, Y. Choi, B. H. Ryu, and H. H. Lee, “Solution processed IZTO thin film transistor on silicon nitride dielectric layer, J. Indus. Engine. Chem., vol. 17, pp. 96-99, 2011.
[16]W. S. Cheong, J. Y. Bak, and H. S. Kim, “Transparent Flexible Zinc–Indium–Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films, Jpn. J. Appl. Phys., vol. 49, pp. 05EB10-05EB10-4, 2010.
[17]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155 no. 6, pp. H390-H395, 2008.

Chapter 4
[1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, no. 5623, pp. 1269–1271, May 2003.
[2]Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes, Thin Solid Films, vol. 516, pp. 5899–5902, 2008.
[3]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, pp. 488–492, 2004.
[4]K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Application of exponential tail-state distribution model to the above-threshold characteristics of Zn-based oxide thin-film transistors, IEEE Tran. Electron. Dev., vol. 56, pp. 2165–2168, 2009.
[5]Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices, Jpn. J. Appl. Phys., vol. 48, pp. 031301 (4 pages), 2009.
[6]W. Andreoni, and C. A. Pignedoli, “Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles, Appl. Phys. Lett., vol. 96, pp. 062901 (3 pages), 2010.
[7]G. S. Oehrlein, F. M. Heurle, and A. Reisman, “Some properties of crystallized tantalum pentoxide thin films on silicon, J. Appl. Phys., vol. 55, pp. 3715–3725, 1984.
[8]G. L. Roberts, J. J. Krajewski, and W. F. Peck, “Dielectric properties of Ta2O5–SiO2 polycrystalline ceramics, J. Appl. Phys., vol. 80, pp. 2346–2348, 1996.
[9]C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors, Org. Electron., vol. 3, pp. 65–72, 2002.
[10]C. Xu, Y. Qiang, Y. Zhu, J. Shao, Z. Fan, and J. Han, “Effects of deposition parameters on laser-induced damage threshold of Ta2O5 films, Optics & Laser Tech., vol. 42, pp. 497–502, 2010.
[11]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155, no. 6, pp. H390-H395, 2008.
[12]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer, J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
[13]M. G. Kim, H. S. Kim, Y. G. Ha, J. He, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors, J. Amer. Chem. Soc., vol. 132, pp. 10352-10364, 2010.
[14]B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Kim, D. H. Lee, Y. Choi, B. H. Ryu, and H. H. Lee, “Solution processed IZTO thin film transistor on silicon nitride dielectric layer, J. Indus. Engine. Chem., vol. 17, pp. 96-99, 2011.

Chapter 5
[1]S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based sensors with ITO contacts, IEEE Sensors J., vol. 6, pp. 406–411, Apr. 2006.
[2]P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L. Wu, High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer, IEEE J. Quan. Electron., vol. 43, pp. 1060–1064, Nov. 2007.
[3]M. Razeghi, “Short-wavelength solar-blind detectors-status, prospects, and markets, Proc. IEEE, vol. 90, pp. 1006–1014, Jun. 2002.
[4]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer, IEEE J. Quan. Electron., vol. 44, pp. 916–921, Oct. 2008.
[5]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155, pp. H390, 2008.
[6]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer, J. Phys. D: Appl. Phys. vol. 40, pp. 1335, 2007.
[7]M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors, Appl. Phys. Lett., vol. 95, pp. 173508 (3 pages), 2009.
[8]K. J. Chen, F. Y. Hung, S. J. Chang, S. P. Chang, Y. C. Mai, and Z. S. Hu, A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system, J. Alloy. Compd., vol. 509, pp. 3667–3671, 2011.
[9]K. J. Saji, and M. K. Jayaraj, Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films, Phys. Stat. Sol. (a), vol. 205, No. 7, pp. 1625–1630, 2008.
[10]M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors, IEEE J. Sel. Top. Quan. Electron., Vol. 10, pp. 840-848, 2004.
[11]M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors, IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
[12]H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors, Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003.
[13]W. Y. Weng, T. J. Hsueh, S. J. Chang, and S. P. Chang, “A Solar-Blind β-Ga2O3 Nanowire Photodetector, IEEE Photo. Tech. Lett., vol. 22, pp. 709-711, 2010.
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top